Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Relationship between wind speed and plant hydraulics at the global scale

Abstract

Wind is an important ecological factor for plants as it can increase evapotranspiration and cause dehydration. However, the impact of wind on plant hydraulics at a global scale remains unclear. Here we compiled plant key hydraulic traits, including water potential at 50% loss of hydraulic conductivity (P50), xylem-specific hydraulic conductivity (KS), leaf area to sapwood area ratio (AL/AS) and conduit diameter (D) with 2,786 species-at-site combinations across 1,922 woody species at 469 sites worldwide and analysed their correlations with wind speed. Even with other climatic factors controlled (for example, moisture index, temperature and vapour pressure deficit), wind speed clearly affected plant hydraulics; for example, on average, species from windier sites constructed sapwood with smaller D and lower KS that was more resilient to drought (more negative P50), deploying less leaf total area for a given sapwood cross-section. Species with these traits may be at an advantage under future climates with higher wind speeds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual framework for water fluxes in plants under different wind scenarios.
Fig. 2: Partial regression plots illustrating the effects of wind speed on plant hydraulics and associated traits, with variation in other climate variables simultaneously accounted for.
Fig. 3: Summary of variance partitioning analyses quantifying the individual contribution of each climatic variable on plant hydraulic traits.
Fig. 4: Path models of relationships among wind speed, MI and plant traits.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via Zenodo at https://doi.org/10.5281/zenodo.14028803 (ref. 61).

Code availability

Code is available via Zenodo at https://doi.org/10.5281/zenodo.14028803 (ref. 61).

References

  1. Ennos, A. R. Wind as an ecological factor. Trends Ecol. Evol. 12, 108–111 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, Y. et al. Increases in China’s wind energy production from the recovery of wind speed since 2012. Environ. Res. Lett. 17, 114035 (2022).

    Article  Google Scholar 

  3. Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979–985 (2019).

    Article  Google Scholar 

  4. De Langre, E. Effects of wind on plants. Annu. Rev. Fluid Mech. 40, 141–168 (2008).

    Article  Google Scholar 

  5. Gardiner, B., Berry, P. & Moulia, B. Wind impacts on plant growth, mechanics and damage. Plant Sci. 245, 94–118 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388 (2019).

    Article  Google Scholar 

  7. Chambers, J. Q. et al. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proc. Natl Acad. Sci. USA 110, 3949–3954 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Whitehead, F. H. Experimental studies of the effect of wind on plant growth and anatomy. IV. Growth substances and adaptative anatomical and morphological changes. New Phytol. 62, 86–90 (1963).

    Article  Google Scholar 

  9. Wu, C. et al. Widespread decline in winds delayed autumn foliar senescence over high latitudes. Proc. Natl Acad. Sci. USA 118, e2015821118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leigh, A. et al. Do thick leaves avoid thermal damage in critically low wind speeds? New Phytol. 194, 477–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Schymanski, S. J. & Or, D. Wind increases leaf water use efficiency. Plant Cell Environ. 39, 1448–1459 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Retuerto, R. & Woodward, F. I. Effects of windspeed on the growth and biomass allocation of white mustard Sinapis alba L. Oecologia 92, 113–123 (1992).

    Article  PubMed  Google Scholar 

  13. Smith, V. C. & Ennos, A. R. The effects of air flow and stem flexure on the mechanical and hydraulic properties of the stems of sunflowers Helianthus annuus L. J. Exp. Bot. 54, 845–849 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Telewski, F. W. in Wind and Trees (eds Coutts, M. P. & Grace, J.) 237–263 (Cambridge Univ. Press, 1995).

  15. Zhu, J. J., Liu, Z. G., Li, X. F., Takeshi, M. & Yutaka, G. Review: effects of wind on trees. J. For. Res. 15, 153–160 (2004).

    Article  Google Scholar 

  16. He, P. et al. Growing‐season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Glob. Change Biol. 26, 1833–1841 (2020).

    Article  Google Scholar 

  17. Petit, G., Anfodillo, T., Carraro, V., Grani, F. & Carrer, M. Hydraulic constraints limit height growth in trees at high altitude. New Phytol. 189, 241–252 (2011).

    Article  PubMed  Google Scholar 

  18. Wilson, J. W. Notes on wind and its effects in arctic–alpine vegetation. J. Ecol. 47, 415–427 (1959).

    Article  Google Scholar 

  19. De Kauwe, M. G., Medlyn, B. E., Knauer, J. & Williams, C. A. Ideas and perspectives: how coupled is the vegetation to the boundary layer? Biogeosciences 14, 4435–4453 (2017).

    Article  Google Scholar 

  20. Anten, N. P., Alcalá‐Herrera, R., Schieving, F. & Onoda, Y. Wind and mechanical stimuli differentially affect leaf traits in Plantago major. New Phytol. 188, 554–564 (2010).

    Article  PubMed  Google Scholar 

  21. Laurans, M. et al. Why incorporate plant architecture into trait-based ecology? Trends Ecol. Evol. 39, 524–536 (2024).

    Article  PubMed  Google Scholar 

  22. Liu, H. et al. Hydraulic traits are coordinated with maximum plant height at the global scale. Sci. Adv. 5, eaav1332 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. McArthur, C., Bradshaw, O. S., Jordan, G. J., Clissold, F. J. & Pile, A. J. Wind affects morphology, function, and chemistry of eucalypt tree seedlings. Int. J. Plant Sci. 171, 73–80 (2010).

    Article  Google Scholar 

  24. Niklas, K. J. Differences between Acer saccharum leaves from open and wind-protected sites. Ann. Bot. 78, 61–66 (1996).

    Article  Google Scholar 

  25. Tamasi, E. et al. Influence of wind loading on root system development and architecture in oak (Quercus robur L.) seedlings. Trees 19, 374–384 (2005).

    Article  Google Scholar 

  26. Werger, L., Bergmann, J., Weber, E. & Heinze, J. Wind intensity affects fine root morphological traits with consequences for plant–soil feedback effects. AoB Plants 12, plaa050 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Comita, L. S. et al. Abiotic and biotic drivers of seedling survival in a hurricane‐impacted tropical forest. J. Ecol. 97, 1346–1359 (2009).

    Article  Google Scholar 

  28. Barrere, J. et al. Functional traits and climate drive interspecific differences in disturbance‐induced tree mortality. Glob. Change Biol. 29, 2836–2851 (2023).

    Article  CAS  Google Scholar 

  29. Tanner, E. V., Rodriguez-Sanchez, F., Healey, J. R., Holdaway, R. J. & Bellingham, P. J. Long‐term hurricane damage effects on tropical forest tree growth and mortality. Ecology 95, 2974–2983 (2014).

    Article  Google Scholar 

  30. Vandermeer, J., Cerda, I. G. D. L., Boucher, D., Perfecto, I. & Ruiz, J. Hurricane disturbance and tropical tree species diversity. Science 290, 788–791 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Ibanez, T. et al. Altered cyclone–fire interactions are changing ecosystems. Trends Plant Sci. 27, 1218–1230 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Smith‐Martin, C. M. et al. Hurricanes increase tropical forest vulnerability to drought. New Phytol. 235, 1005–1017 (2022).

    Article  PubMed  Google Scholar 

  33. Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Zhu, S. D., Liu, H., Xu, Q. Y., Cao, K. F. & Ye, Q. Are leaves more vulnerable to cavitation than branches? Funct. Ecol. 30, 1740–1744 (2016).

    Article  Google Scholar 

  35. Morris, H. et al. Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant Cell Environ. 41, 245–260 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Mencuccini, M. et al. Leaf economics and plant hydraulics drive leaf: wood area ratios. New Phytol. 224, 1544–1556 (2019).

    Article  PubMed  Google Scholar 

  37. Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).

    Article  PubMed  Google Scholar 

  38. Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Change 10, 691–695 (2020).

    Article  CAS  Google Scholar 

  39. Liu, H., Ye, Q., Gleason, S. M., He, P. & Yin, D. Weak tradeoff between xylem hydraulic efficiency and safety: climatic seasonality matters. New Phytol. 229, 1440–1452 (2021).

    Article  PubMed  Google Scholar 

  40. Kuparinen, A. Mechanistic models for wind dispersal. Trends Plant Sci. 11, 296–301 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Pazos, G. E., Greene, D. F., Katul, G., Bertiller, M. B. & Soons, M. B. Seed dispersal by wind: towards a conceptual framework of seed abscission and its contribution to long‐distance dispersal. J. Ecol. 101, 889–904 (2013).

    Article  Google Scholar 

  42. Tackenberg, O., Poschlod, P. & Bonn, S. Assessment of wind dispersal potential in plant species. Ecol. Monogr. 73, 191–205 (2003).

    Article  Google Scholar 

  43. Ibanez, T. et al. Globally consistent impact of tropical cyclones on the structure of tropical and subtropical forests. J. Ecol. 107, 279–292 (2019).

    Article  Google Scholar 

  44. Jackson, T. D. et al. Wind shapes the growth strategies of trees in a tropical forest. Ecol. Lett. 27, e14527 (2024).

    Article  PubMed  Google Scholar 

  45. Lai, H., Chong, K., Yee, A. T. K., Tan, H. T. W. & van Breugel, M. Functional traits that moderate tropical tree recruitment during post-windstorm secondary succession. J. Ecol. 108, 1322–1333 (2020).

    Article  Google Scholar 

  46. Van Gardingen, P. R., Grace, J. & Jeffree, C. E. Abrasive damage by wind to the needle surfaces of Picea sitchensis (Bong.) Carr. and Pinus sylvestris L. Plant Cell Environ. 14, 185–193 (1991).

    Article  Google Scholar 

  47. Wilson, J. Microscopic features of wind damage to leaves of Acer pseudoplatanus L. Ann. Bot. 53, 73–82 (1984).

    Article  Google Scholar 

  48. Gates, D. M. Energy, plants, and ecology. Ecology 46, 1–13 (1965).

    Article  Google Scholar 

  49. Nobel, P. S. Biophysical Plant Physiology and Ecology (WH Freeman and Company, 1983).

  50. New, M., Hulme, M. & Jones, P. Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Clim. 12, 829–856 (1999).

    Article  Google Scholar 

  51. Gleason, S. M. et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytol. 209, 123–136 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Landsberg, J. J. & James, G. B. Wind profiles in plant canopies: studies on an analytical model. J. Appl. Ecol. 8, 729–741 (1971).

    Article  Google Scholar 

  53. Trew, B. T. et al. Novel temperatures are already widespread beneath the world’s tropical forest canopies. Nat. Clim. Change 14, 753–759 (2024).

    Article  Google Scholar 

  54. Onoda, Y. & Anten, N. P. Challenges to understand plant responses to wind. Plant Signal. Behav. 6, 1057–1059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lobell, D. B. & Field, C. B. Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961. Glob. Change Biol. 14, 39–45 (2008).

    Article  Google Scholar 

  56. Quinn Thomas, R., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3, 13–17 (2010).

    Article  CAS  Google Scholar 

  57. Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 1, 430–437 (2008).

    Article  CAS  Google Scholar 

  58. Zhang, Y. et al. Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nat. Clim. Change 12, 581–586 (2022).

    Article  Google Scholar 

  59. Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article  Google Scholar 

  60. Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. He, P. Dataset and R code for “Relationship between wind speed and plant hydraulics at the global scale”. Zenodo https://doi.org/10.5281/zenodo.14028803 (2024).

  62. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  63. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 1958–2015 (2018).

    Article  Google Scholar 

  64. Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).

    Article  Google Scholar 

  65. Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article  Google Scholar 

  66. Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).

    Article  Google Scholar 

  67. Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56 (2017).

    Article  Google Scholar 

  68. Lai, J., Zou, Y., Zhang, J. & Peres‐Neto, P. R. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol. Evol. 13, 782–788 (2022).

    Article  Google Scholar 

  69. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  70. Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3—an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).

    Article  Google Scholar 

  71. Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge Univ. Press, 2006).

  72. Isasa, E. et al. Addressing controversies in the xylem embolism resistance–vessel diameter relationship. New Phytol. 238, 283–296 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. M. Gleason and L. Hua for their help on data collection and manuscript revisions and W. Tang for his help on figure presentation. This work was supported by the National Natural Science Foundation of China (32371641, 32371575 and 32171503) and Guangdong Science and Technology Plan Project (2023B1212060046). H.L. was funded by Guangdong Basic and Applied Basic Research Foundation (2024B1515020067) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Y2023093). H.W. was funded by Hainan Institute of National Park Research Program (KY-23ZK01).

Author information

Authors and Affiliations

Authors

Contributions

P.H., I.J.W. and Q.Y. conceived the idea. P.H., X. Liu and H.L. collected the data. P.H. and K.Y. analysed the data. P.H. and Q.Y. wrote the initial manuscript. I.J.W., H.W., K.Y., H.L., X. Liang, S.Z., J.Y. and Y.-P.W. contributed substantially to subsequent versions.

Corresponding author

Correspondence to Qing Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Miguel Berdugo, Francesco Petruzzellis and Ensheng Weng for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Tables 1–5.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P., Ye, Q., Yu, K. et al. Relationship between wind speed and plant hydraulics at the global scale. Nat Ecol Evol 9, 273–281 (2025). https://doi.org/10.1038/s41559-024-02603-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-024-02603-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing