Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic and phenotypic evidence support visual and olfactory shifts in primate evolution

Abstract

Sensory trade-offs between vision and olfaction in the evolution and radiation of primates have long been debated. However, insights have been limited by a lack of sensory gene sequences and accompanying functional predictions. Here we conduct large-scale functional analyses of visual and olfactory receptors and related brain regions across extant primates. Our results reveal a visual shift from ultraviolet to violet colour sensitivity in early haplorrhine primates, followed by acceleration in the rhodopsin retinal release rates at the origin of anthropoids, both of which are expected to greatly enhance visual acuity under brighter light conditions. Additionally, we find that the sensitivity of olfactory receptors shifted from narrowly to broadly tuned early in anthropoid evolution. In contrast, strepsirrhines appear to have retained sensitive dim-light vision and underwent functional enhancement of narrowly tuned olfactory receptors. Our models indicate that this would have enhanced odorant discrimination and facilitated olfaction-mediated physiology and behaviour. These differences in tuning patterns of olfactory receptors between major primate lineages mirror well-established morphological differences in external anatomy and brain structures, revealing new mechanisms of olfactory adaptation and evolutionary plasticity. Our multisystem analyses reveal patterns of co-evolution in genomic, molecular and neuroanatomical traits that are consistent with a sensory ‘reallocation’ rather than strict trade-offs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypotheses of diel activity shifts of early primates based on opsin evidence.
Fig. 2: Divergent evolution of differently tuned ORs.
Fig. 3: Variation of the speculated odorant recognition code by NTORs in primate evolution.
Fig. 4: Co-evolution between visual and olfactory genotypes and phenotypes and neuroanatomical traits.

Similar content being viewed by others

Data availability

All sequence and phenotypic data are listed in the text and Supplementary Information. Source data are provided with this paper.

Code availability

Code to run the analyses is available at https://github.com/GanglabSnnu/OR_identify.

References

  1. Clark, W. E. L. G. The Antecedents of Man: An Introduction to the Evolution of the Primates (Harper, 1963).

  2. Kawamura, S. & Melin, A. D. in Evolution of the Human Genome I: The Genome and Genes (ed. Saitou, N.) 181–216 (Springer, 2017).

  3. Shepherd, G. M. The human sense of smell: are we better than we think? PLoS Biol. 2, E146 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Charpentier, M. J., Mboumba, S., Ditsoga, C. & Drea, C. M. Nasopalatine ducts and flehmen behavior in the mandrill: reevaluating olfactory communication in Old World primates. Am. J. Primatol. 75, 703–714 (2013).

    Article  PubMed  Google Scholar 

  5. Heymann, E. W. The neglected sense-olfaction in primate behavior, ecology, and evolution. Am. J. Primatol. 68, 519–524 (2006).

    Article  PubMed  Google Scholar 

  6. Tan, Y., Yoder, A. D., Yamashita, N. & Li, W. H. Evidence from opsin genes rejects nocturnality in ancestral primates. Proc. Natl Acad. Sci. USA 102, 14712–14716 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jacobs, R. L. et al. Novel opsin gene variation in large-bodied, diurnal lemurs. Biol. Lett. 13, 20170050 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nei, M., Niimura, Y. & Nozawa, M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat. Rev. Genet. 9, 951–963 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Matsui, A., Go, Y. & Niimura, Y. Degeneration of olfactory receptor gene repertories in primates: no direct link to full trichromatic vision. Mol. Biol. Evol. 27, 1192–1200 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 5, 263–278 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Niimura, Y., Matsui, A. & Touhara, K. Acceleration of olfactory receptor gene loss in primate evolution: possible link to anatomical change in sensory systems and dietary transition. Mol. Biol. Evol. 35, 1437–1450 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Niimura, Y. & Nei, M. Evolution of olfactory receptor genes in the human genome. Proc. Natl Acad. Sci. USA 100, 12235–12240 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Melin, A. D. et al. Euarchontan opsin variation brings new focus to primate origins. Mol. Biol. Evol. 33, 1029–1041 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Griffin, R. H., Matthews, L. J. & Nunn, C. L. Evolutionary disequilibrium and activity period in primates: a Bayesian phylogenetic approach. Am. J. Phys. Anthropol. 147, 409–416 (2012).

    Article  PubMed  Google Scholar 

  15. Wu, Y., Wang, H., Wang, H. & Hadly, E. A. Rethinking the origin of primates by reconstructing their diel activity patterns using genetics and morphology. Sci. Rep. 7, 11837 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).

    Article  PubMed  Google Scholar 

  17. Wu, J., Yonezawa, T. & Kishino, H. Rates of molecular evolution suggest natural history of life history traits and a post-K-Pg nocturnal bottleneck of placentals. Curr. Biol. 27, 3025–3033 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Shao, Y. et al. Phylogenomic analyses provide insights into primate evolution. Science 380, 913–924 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Kawamura, S. Color vision diversity and significance in primates inferred from genetic and field studies. Genes Genomics 38, 779–791 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Melin, A. D., Matsushita, Y., Moritz, G. L., Dominy, N. J. & Kawamura, S. Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates. Proc. Biol. Sci. 280, 20130189 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. Yokoyama, S. et al. Epistatic adaptive evolution of human color vision. PLoS Genet. 10, e1004884 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Emerling, C. A., Huynh, H. T., Nguyen, M. A., Meredith, R. W. & Springer, M. S. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution. Proc. Biol. Sci. 282, 20151817 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Morrow, J. M. et al. An experimental comparison of human and bovine rhodopsin provides insight into the molecular basis of retinal disease. FEBS Lett. 591, 1720–1731 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Y. et al. Scotopic rod vision in tetrapods arose from multiple early adaptive shifts in the rate of retinal release. Proc. Natl Acad. Sci. USA 116, 12627–12628 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bickelmann, C. et al. The molecular origin and evolution of dim-light vision in mammals. Evolution 69, 2995–3003 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Jacobs, G. H. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—a significant trend in the evolution of mammalian vision. Vis. Neurosci. 30, 39–53 (2013).

    Article  PubMed  Google Scholar 

  27. Yokoyama, S., Tada, T., Liu, Y., Faggionato, D. & Altun, A. A simple method for studying the molecular mechanisms of ultraviolet and violet reception in vertebrates. BMC Evol. Biol. 16, 64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yokoyama, S. Evolution of dim-light and color vision pigments. Annu. Rev. Genomics Hum. Genet. 9, 259–282 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Ala-Laurila, P. et al. Visual cycle: dependence of retinol production and removal on photoproduct decay and cell morphology. J. Gen. Physiol. 128, 153–169 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dominy, N. J. & Melin, A. D. Liminal light and primate evolution. Annu. Rev. Anthropol. 49, 257–276 (2020).

    Article  Google Scholar 

  31. Melin, A. D., Moritz, G. L., Fosbury, R. A., Kawamura, S. & Dominy, N. J. Why aye-ayes see blue. Am. J. Primatol. 74, 185–192 (2012).

    Article  PubMed  Google Scholar 

  32. Dungan, S. Z. & Chang, B. S. Epistatic interactions influence terrestrial–marine functional shifts in cetacean rhodopsin. Proc. Biol. Sci. 284, 20162743 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Morrow, J. M. & Chang, B. S. Comparative mutagenesis studies of retinal release in light-activated zebrafish rhodopsin using fluorescence spectroscopy. Biochemistry 54, 4507–4518 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Guo, J. et al. Convergent evolutionary shifts in rhodopsin retinal release explain shared opsin repertoires in monotremes and crocodilians. Proc. Biol. Sci. 290, 20230530 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Castiglione, G. M. & Chang, B. S. Functional trade-offs and environmental variation shaped ancient trajectories in the evolution of dim-light vision. eLife 7, e35957 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Davies, W. I., Collin, S. P. & Hunt, D. M. Molecular ecology and adaptation of visual photopigments in craniates. Mol. Ecol. 21, 3121–3158 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Bender, B. J. et al. A practical guide to large-scale docking. Nat. Protoc. 16, 4799–4832 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saito, H., Chi, Q., Zhuang, H., Matsunami, H. & Mainland, J. D. Odor coding by a mammalian receptor repertoire. Sci. Signal. 2, ra9 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nara, K., Saraiva, L. R., Ye, X. & Buck, L. B. A large-scale analysis of odor coding in the olfactory epithelium. J. Neurosci. 31, 9179–9191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saraiva, L. R. et al. Combinatorial effects of odorants on mouse behavior. Proc. Natl Acad. Sci. USA 113, E3300–E3306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harini, K. & Sowdhamini, R. Computational approaches for decoding select odorant–olfactory receptor interactions using mini-virtual screening. PLoS ONE 10, e0131077 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Delbarco-Trillo, J., Burkert, B. A., Goodwin, T. E. & Drea, C. M. Night and day: the comparative study of strepsirrhine primates reveals socioecological and phylogenetic patterns in olfactory signals. J. Evol. Biol. 24, 82–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Drea, C. M., Goodwin, T. E. & delBarco-Trillo, J. P-Mail: the information highway of nocturnal, but not diurnal or cathemeral, strepsirrhines. Folia Primatol. 90, 422–438 (2019).

    Article  Google Scholar 

  46. Drea, C. M. Design, delivery and perception of condition-dependent chemical signals in strepsirrhine primates: implications for human olfactory communication. Philos. Trans. R. Soc. Lond. B 375, 20190264 (2020).

    Article  Google Scholar 

  47. Carey, A. F., Wang, G., Su, C. Y., Zwiebel, L. J. & Carlson, J. R. Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464, 66–71 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dominy, N. J. & Lucas, P. W. Ecological importance of trichromatic vision to primates. Nature 410, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Regan, B. C. et al. Fruits, foliage and the evolution of primate colour vision. Philos. Trans. R. Soc. Lond. B 356, 229–283 (2001).

    Article  CAS  Google Scholar 

  50. Barton, R. A. Visual specialization and brain evolution in primates. Proc. Biol. Sci. 265, 1933–1937 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barton, R. A., Purvis, A. & Harvey, P. H. Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philos. Trans. R. Soc. Lond. B 348, 381–392 (1995).

    Article  CAS  Google Scholar 

  52. DeCasien, A. R. & Higham, J. P. Primate mosaic brain evolution reflects selection on sensory and cognitive specialization. Nat. Ecol. Evol. 3, 1483–1493 (2019).

    Article  PubMed  Google Scholar 

  53. Barton, R. A. Olfactory evolution and behavioral ecology in primates. Am. J. Primatol. 68, 545–558 (2006).

    Article  PubMed  Google Scholar 

  54. Ross, C. F. Allometric and functional influences on primate orbit orientation and the origins of the Anthropoidea. J. Hum. Evol. 29, 201–227 (1995).

    Article  Google Scholar 

  55. Kaas, J. H., Huerta, M. F., Weber, J. T. & Harting, J. K. Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. J. Comp. Neurol. 182, 517–553 (1978).

    Article  CAS  PubMed  Google Scholar 

  56. Casagrande, V. A., Khaytin, I. & Boyd, J. in The Evolution of Primate Nervous Systems (eds Kaas, J. H. & Preuss, T. M.) 87–108 (Springer, 2007).

  57. Heritage, S. Modeling olfactory bulb evolution through primate phylogeny. PLoS ONE 9, e113904 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gilad, Y., Przeworski, M. & Lancet, D. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol. 2, E5 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Garrett, E. C. & Steiper, M. E. Strong links between genomic and anatomical diversity in both mammalian olfactory chemosensory systems. Proc. Biol. Sci. 281, 20132828 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. Webb, D. M., Cortés-Ortiz, L. & Zhang, J. Genetic evidence for the coexistence of pheromone perception and full trichromatic vision in howler monkeys. Mol. Biol. Evol. 21, 697–704 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Garrett, E. C. Was There a Sensory Trade-off in Primate Evolution? The Vomeronasal Groove as a Means of Understanding the Vomeronasal System in the Fossil Record. PhD thesis, City Univ. of New York (2015).

  62. Wysocki, C. J., Yamazaki, K., Curran, M., Wysocki, L. M. & Beauchamp, G. K. Mice (Mus musculus) lacking a vomeronasal organ can discriminate MHC-determined odortypes. Horm. Behav. 46, 241–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Spehr, M. et al. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci. 26, 1961–1970 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Setchell, J. M. et al. Chemical composition of scent-gland secretions in an Old World monkey (Mandrillus sphinx): influence of sex, male status, and individual identity. Chem. Senses 35, 205–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Lazaro-Perea, C., Snowdon, C. T. & de Fátima Arruda, M. Scent-marking behavior in wild groups of common marmosets (Callithrix jacchus). Behav. Ecol. Sociobiol. 46, 313–324 (1999).

    Article  Google Scholar 

  66. Geissmann, T. & Hulftegger, A. Olfactory Communication in Gibbons (Université Louis Pasteur, 1994).

  67. Alport, L. J. Comparative analysis of the role of olfaction and the neocortex in primate intrasexual competition. Anat. Rec. A 281, 1182–1189 (2004).

    Article  Google Scholar 

  68. Fortes-Marco, L., Lanuza, E. & Martinez-Garcia, F. Of pheromones and kairomones: what receptors mediate innate emotional responses? Anat. Rec. 296, 1346–1363 (2013).

    Article  CAS  Google Scholar 

  69. Preuss, T. M. & Wise, S. P. Evolution of prefrontal cortex. Neuropsychopharmacology 47, 3–19 (2022).

    Article  PubMed  Google Scholar 

  70. Li, M. L. et al. Functional genomics analysis reveals the evolutionary adaptation and demographic history of pygmy lorises. Proc. Natl Acad. Sci. USA 119, e2123030119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Fabre, P. H., Rodrigues, A. & Douzery, E. J. Patterns of macroevolution among primates inferred from a supermatrix of mitochondrial and nuclear DNA. Mol. Phylogenet. Evol. 53, 808–825 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Version 3.61 (2019).

  78. Eick, G. N., Bridgham, J. T., Anderson, D. P., Harms, M. J. & Thornton, J. W. Robustness of reconstructed ancestral protein functions to statistical uncertainty. Mol. Biol. Evol. 34, 247–261 (2017).

    CAS  PubMed  Google Scholar 

  79. Yokoyama, S. Phylogenetic analysis and experimental approaches to study color vision in vertebrates. Methods Enzymol. 315, 312–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Xia, Y. et al. Convergent phenotypic evolution of rhodopsin for dim-light sensing across deep-diving vertebrates. Mol. Biol. Evol. 38, 5726–5734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Beichman, A. C. et al. Aquatic adaptation and depleted diversity: a deep dive into the genomes of the sea otter and giant otter. Mol. Biol. Evol. 36, 2631–2655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Niimura, Y., Matsui, A. & Touhara, K. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res. 24, 1485–1496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Yang, J., Roy, A. & Zhang, Y. Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29, 2588–2595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zheng, L. et al. MoDAFold: a strategy for predicting the structure of missense mutant protein based on AlphaFold2 and molecular dynamics. Brief. Bioinform. 25, bbae006 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Billesbølle, C. B. et al. Structural basis of odorant recognition by a human odorant receptor. Nature 615, 742–749 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang, J., Yang, J., Jang, R. & Zhang, Y. GPCR-I-TASSER: a hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. Structure 23, 1538–1549 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, S. et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 49, D1388–D1395 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Sushko, I. et al. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J. Comput. Aided Mol. Des. 25, 533–554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cao, Y., Charisi, A., Cheng, L., Jiang, T. & Girke, T. ChemmineR: a compound mining framework for R. Bioinformatics 24, 1733–1734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Haddad, R. et al. A metric for odorant comparison. Nat. Methods 5, 425–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. van der Maaten, L. & Hinton, G. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  95. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34, 1600–1602 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Lill, M. A. & Danielson, M. L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des. 25, 13–19 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Baud, O. et al. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles. Sci. Rep. 5, 14948 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Teşileanu, T., Cocco, S., Monasson, R. & Balasubramanian, V. Adaptation of olfactory receptor abundances for efficient coding. eLife 8, e39279 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 112 (2017).

    Article  PubMed  Google Scholar 

  102. Young, J. M., Massa, H. F., Hsu, L. & Trask, B. J. Extreme variability among mammalian V1R gene families. Genome Res. 20, 10–18 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  104. Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R package version 5 (2013).

  105. Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: a new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. J. Murphy for providing valuable comments on earlier versions of this manuscript, R. Crouch from Medical University of South Carolina and L. Neuhold from National Eye Institute, NIH for 11-cis-retinal, H. Jing from Shaanxi Normal University for technical support and M. dos Reis from Queen Mary, University of London, for useful discussions about ancestral sequence reconstruction. We also thank the National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (https://cstr.cn/31137.02.NPRC) for providing technical support. This work was funded by the National Natural Science Foundation of China grant nos. 32270462 (Y.L.), 32470445 (G.L.), 32270525 (H.L.) and 31822048 (D.-D.W.), the Natural Science Basic Research Programme of Shaanxi grant nos. 2021JM-197 (Y.L.), 2020JM-280 (G.L.) and 2021JM-053 (H.L.), the Fundamental Research Funds for the Central Universities grant nos. GK202102006 (Y.L.), GK201902008 (G.L.), 2020TS050 (H.C.), the Strategic Priority Research Programme of the Chinese Academy of Sciences grant no. XDPB17 (D.-D.W.), Yunnan Provincial Science and Technology Department grant no. 202305AH340006 (D.-D.W.), National Sciences and Engineering Research Council of Canada grant no. RGPIN-2017-03782 (A.D.M.), Canada Research Chairs programme no. 950-231257 (A.D.M.) and were also supported in part by the Intramural Research Programme of the NIH (National Institute of Mental Health and National Institute on Aging) (A.R.D.).

Author information

Authors and Affiliations

Authors

Contributions

Y.L., H.L., G.L. and D.-D.W. designed and supervised the research. H.C., A.D.M., Y.L., Y. Cui, X.G., Y. Zhan, N.L., J.G. and Z.X. performed evolutionary analyses and experimental assays for visual pigments. H.L., G.L., J. Wan, S.W., Y. Zhang, L.Z., J. Williamson, T.Z., Q.L., W.H., Y. Cao, J.Y., J.Z., Y.S., J. Wang and W.C. carried out functional modelling analyses for ORs. A.R.D. conducted integrative analyses of genetic, sensory and neuroanatomical data. G.L., Y.L., A.D.M., S.J.R., A.R.D., H.L., D.-D.W., H.C., S.S., X.L., X.Q. and G.Z. wrote the paper with comments from all listed authors.

Corresponding authors

Correspondence to Dong-Dong Wu, Yang Liu, Huimeng Lu or Gang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Robert Barton, Robert Meredith, Yoshihito Niimura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Text, Figs. 1–16, Tables 1–3 and References.

Reporting Summary

Supplementary Data

Predicted binding odorants for each OR functional cluster.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, H., Wan, J., Melin, A.D. et al. Genomic and phenotypic evidence support visual and olfactory shifts in primate evolution. Nat Ecol Evol 9, 721–733 (2025). https://doi.org/10.1038/s41559-025-02651-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02651-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing