Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Widespread ecological novelty across the terrestrial biosphere

Abstract

Human activities have transformed many wild and semiwild ecosystems into novel states without historical precedent. Without knowing the current distribution of what drives the emergence of such novelty, predicting future ecosystem states and informing conservation and restoration policies remain difficult. Here we construct global maps of three key drivers generating novel conditions—climate change, defaunation and floristic disruption—and summarize them to a measure of total novelty exposure. We show that the terrestrial biosphere is widely exposed to novel conditions, with 58% of the total area exposed to high levels of total novelty. All climatic regions and biomes are exposed to substantial levels of novelty. Relative contributions of individual drivers vary between climatic regions, with climate changes and defaunation the largest contributors globally. Protected areas and key biodiversity areas, whether formally protected or not, have similar exposure, with high total novelty experienced in 58% of cells inside protected areas and 56% inside key biodiversity areas. Our results highlight the importance of investigating ecosystem and biodiversity responses to rising ecological novelty for informing actions towards biosphere stewardship.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The biosphere is highly exposed to locally novel conditions along three drivers of novelty.
Fig. 2: Climatic regions are unevenly exposed to novel conditions.
Fig. 3: PAs and KBAs are equally exposed to highly novel conditions.

Similar content being viewed by others

Data availability

All data used in the study are from publicly available sources. Climate and palaeoclimate data are both available from https://chelsa-climate.org/ (refs. 43,75) and ice sheet data are available from https://www.atmosp.physics.utoronto.ca/~peltier/data.php. Layers used for building the defaunation data are available from https://megapast2future.github.io/PHYLACINE_1.2/. The exact GBIF data used for generating the alien species occurrence data in this study are available from https://doi.org/10.15468/dl.6aebcd (ref. 80); the authors note that a more recent download of GBIF data may result in slightly different results. The country-level checklists from GRIIS are available via Zenodo at https://zenodo.org/records/6348164 (ref. 83). The BII was accessed directly from refs. 55,95. The WDPA can be accessed from https://www.protectedplanet.net and KBAs can be requested from keybiodiversityareas.org. The three novelty process layers generated in this study, as well as the total novelty exposure layer, are available via Zenodo at https://doi.org/10.5281/zenodo.14677611 (ref. 96).

Code availability

All analysis code is available via GitHub at https://github.com/KerrMatt/NoveltyMapping and in the Supplementary Code.

References

  1. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Gordon, J. D., Fagan, B., Milner, N. & Thomas, C. D. Floristic diversity and its relationships with human land use varied regionally during the Holocene. Nat. Ecol. Evol. 8, 1459–1471 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Svenning, J.-C., Kerr, M. R., Mungi, N. A., Ordonez, A. & Riede, F. Defining the Anthropocene as a geological epoch captures human impacts’ triphasic nature to empower science and action. One Earth https://doi.org/10.1016/j.oneear.2024.08.004 (2024).

  4. Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Technical Summary. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 35–144 (Cambridge Univ. Press, 2023).

  6. Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clement, S. & Standish, R. J. Novel ecosystems: governance and conservation in the age of the Anthropocene. J. Environ. Manag. 208, 36–45 (2018).

    Article  Google Scholar 

  9. Arias, S. The abandonment of the ideal of wilderness: rewilding as the consequence of the Anthropocene metaphysics on restoration ecology. Anthrop. Rev. https://doi.org/10.1177/20530196241270671 (2024).

  10. Hobbs, R. J. et al. Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15, 1–7 (2006).

    Article  Google Scholar 

  11. Kerr, M. R., Ordonez, A., Riede, F. & Svenning, J.-C. A biogeographic–macroecological perspective on the rising novelty of the biosphere in the Anthropocene. J. Biogeogr. 51, 575–587 (2024).

  12. Ordonez, A. & Gill, J. L. Unravelling the functional and phylogenetic dimensions of novel ecosystem assemblages. Phil. Trans. R. Soc. B 379, 20230324 (2024).

    Article  PubMed  Google Scholar 

  13. Morse, N. B. et al. Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, 12 (2014).

  14. Evers, C. R. et al. The ecosystem services and biodiversity of novel ecosystems: a literature review. Glob. Ecol. Conserv. 13, e00362 (2018).

    Google Scholar 

  15. Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. O’Dea, A. et al. Defining variation in pre-human ecosystems can guide conservation: an example from a Caribbean coral reef. Sci. Rep. 10, 2922 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Article  Google Scholar 

  18. Staples, T. L., Kiessling, W. & Pandolfi, J. M. Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts. Ecol. Lett. 25, 1497–1509 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).

    Article  PubMed  Google Scholar 

  20. Albano, P. G. et al. The dawn of the tropical Atlantic invasion into the Mediterranean Sea. Proc. Natl Acad. Sci. USA 121, e2320687121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

    Article  PubMed  Google Scholar 

  22. Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ordonez, A., Riede, F., Normand, S. & Svenning, J.-C. Towards a novel biosphere in 2300: rapid and extensive global and biome-wide climatic novelty in the Anthropocene. Phil. Trans. R. Soc. B 379, 20230022 (2024).

    Article  PubMed  Google Scholar 

  24. Davis, M., Faurby, S. & Svenning, J.-C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl Acad. Sci. USA 115, 11262–11267 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).

    Article  PubMed  Google Scholar 

  26. Berti, E. & Svenning, J.-C. Megafauna extinctions have reduced biotic connectivity worldwide. Glob. Ecol. Biogeogr. 29, 2131–2142 (2020).

    Article  Google Scholar 

  27. Svenning, J.-C. et al. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Cambridge Prisms: Extinction 2, e5 (2024).

    PubMed  PubMed Central  Google Scholar 

  28. Fehr, V., Buitenwerf, R. & Svenning, J.-C. Non-native palms (Arecaceae) as generators of novel ecosystems: a global assessment. Divers. Distrib. 26, 1523–1538 (2020).

    Article  Google Scholar 

  29. Walentowitz, A. et al. Long-term trajectories of non-native vegetation on islands globally. Ecol. Lett. 26, 729–741 (2023).

    Article  PubMed  Google Scholar 

  30. Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sheffer, E. A review of the development of Mediterranean pine–oak ecosystems after land abandonment and afforestation: are they novel ecosystems? Ann. For. Sci. 69, 429–443 (2012).

    Article  Google Scholar 

  32. Keith, S. A., Newton, A. C., Herbert, R. J. H., Morecroft, M. D. & Bealey, C. E. Non-analogous community formation in response to climate change. J. Nat. Conserv. 17, 228–235 (2009).

    Article  Google Scholar 

  33. Volpe, J. P. et al. Bionovelty and ecological restoration. Restor. Ecol. 32, e14152 (2024).

    Article  Google Scholar 

  34. Hobbs, R. J., Higgs, E. & Harris, J. A. Novel ecosystems: implications for conservation and restoration. Trends Ecol. Evol. 24, 599–605 (2009).

    Article  PubMed  Google Scholar 

  35. Trew, B. T., Lees, A. C., Edwards, D. P., Early, R. & Maclean, I. M. D. Identifying climate-smart tropical Key Biodiversity Areas for protection in response to widespread temperature novelty. Conserv. Lett. 17, e13050 (2024).

    Article  Google Scholar 

  36. McGeoch, M. A., Clarke, D. A., Mungi, N. A. & Ordonez, A. A nature-positive future with biological invasions: theory, decision support and research needs. Phil. Trans. R. Soc. B 379, 20230014 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proc. Natl Acad. Sci. USA 117, 7871–7878 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kharouba, H. M. Shifting the paradigm: the role of introduced plants in the resiliency of terrestrial ecosystems to climate change. Glob. Change Biol. 30, e17319 (2024).

    Article  CAS  Google Scholar 

  39. Gill, J. L. et al. A 2.5-million-year perspective on coarse-filter strategies for conserving nature’s stage. Conserv. Biol. 29, 640–648 (2015).

    Article  PubMed  Google Scholar 

  40. Pandolfi, J. M., Staples, T. L. & Kiessling, W. Increased extinction in the emergence of novel ecological communities. Science 370, 220–222 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Ordonez, A., Williams, J. W. & Svenning, J.-C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Change 6, 1104–1109 (2016).

    Article  Google Scholar 

  42. Hobbs, R. J., Higgs, E. S. & Hall, C. M. in Novel Ecosystems (eds Hobbs, R. J. et al.) 58–60 (Wiley, 2013).

  43. Karger, D. N., Nobis, M. P., Normand, S., Graham, C. & Zimmermann, N. CHELSA-TraCE21k—high-resolution (1 km) downscaled transient temperature and precipitation data since the Last Glacial Maximum. Climate 19, 439–456 (2023).

    Google Scholar 

  44. Williams, J. J. & Newbold, T. Local climatic changes affect biodiversity responses to land use: a review. Divers. Distrib. 26, 76–92 (2020).

    Article  Google Scholar 

  45. Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).

  46. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burke, K. D. et al. Differing climatic mechanisms control transient and accumulated vegetation novelty in Europe and eastern North America. Phil. Trans. R. Soc. B 374, 20190218 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fastovich, D., Radeloff, V. C., Zuckerberg, B. & Williams, J. W. Legacies of millennial-scale climate oscillations in contemporary biodiversity in eastern North America. Phil. Trans. R. Soc. B 379, 20230012 (2024).

    Article  PubMed  Google Scholar 

  49. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).

    Article  PubMed  Google Scholar 

  51. Mungi, N. A., Jhala, Y. V., Qureshi, Q., le Roux, E. & Svenning, J.-C. Megaherbivores provide biotic resistance against alien plant dominance. Nat. Ecol. Evol. 7, 1645–1653 (2023).

    Article  PubMed  Google Scholar 

  52. Carter, B. E. & Alroy, J. Energy use of modern terrestrial large mammal communities mirrors Late Pleistocene megafaunal extinctions. Front. Biogeogr. 16.2, e62724 (2024).

  53. Schittko, C. et al. A multidimensional framework for measuring biotic novelty: how novel is a community? Glob. Change Biol. 26, 4401–4417 (2020).

    Article  Google Scholar 

  54. Roy, H. E. et al. Curbing the major and growing threats from invasive alien species is urgent and achievable. Nat. Ecol. Evol. 8, 1216–1223 (2024).

    Article  PubMed  Google Scholar 

  55. Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Scholes, R. J. & Biggs, R. A biodiversity intactness index. Nature 434, 45–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Davoli, M. et al. Megafauna diversity and functional declines in Europe from the Last Interglacial to the present. Glob. Ecol. Biogeogr. 33, 34–47 (2024).

  58. Neugarten, R. A. et al. Mapping the planet’s critical areas for biodiversity and nature’s contributions to people. Nat. Commun. 15, 261 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Langhammer, P. F., Mittermeier, R. A., Plumptre, A. J., Waliczky, Z. & Sechrest, W. Key Biodiversity Areas (CEMEX, 2021).

  60. The Relationship between Key Biodiversity Areas (KBAs) and Protected Areas (Key Biodiversity Areas Partnership, 2017).

  61. Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM) [Online] (UNEP-WCMC & IUCN, 2024).

  62. Bingham, H. C. et al. Sixty years of tracking conservation progress using the World Database on Protected Areas. Nat. Ecol. Evol. 3, 737–743 (2019).

    Article  PubMed  Google Scholar 

  63. Butchart, S. H. M. et al. Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS ONE 7, e32529 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Duncanson, L. et al. The effectiveness of global protected areas for climate change mitigation. Nat. Commun. 14, 2908 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).

    Article  PubMed  Google Scholar 

  66. Xie, Y., Wang, X. & Silander, J. A. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. Proc. Natl Acad. Sci. USA 112, 13585–13590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fløjgaard, C., Pedersen, P. B. M., Sandom, C. J., Svenning, J.-C. & Ejrnæs, R. Exploring a natural baseline for large-herbivore biomass in ecological restoration. J. Appl. Ecol. 59, 18–24 (2022).

    Article  Google Scholar 

  68. Trepel, J. et al. Zoogeochemistry of a protected area: driven by anthropogenic impacts and animal behavior. Conserv. Sci. Pract. 6, e13107 (2024).

    Article  Google Scholar 

  69. Ganz, T. R. et al. Cougars, wolves, and humans drive a dynamic landscape of fear for elk. Ecology 105, e4255 (2024).

    Article  PubMed  Google Scholar 

  70. Svenning, J.-C., Buitenwerf, R. & Le Roux, E. Trophic rewilding as a restoration approach under emerging novel biosphere conditions. Curr. Biol. 34, R435–R451 (2024).

    Article  CAS  PubMed  Google Scholar 

  71. Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    Article  PubMed  Google Scholar 

  72. Prober, S. M. et al. Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Front. Ecol. Evol. 3, 65 (2015).

  73. Delavaux, C. S. et al. Native diversity buffers against severity of non-native tree invasions. Nature 621, 773–781 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H. & Zimmermann, N. E. CHELSA-TraCE21k: Downscaled Transient Temperature and Precipitation Data Since the Last Glacial Maximum. EnviDat https://doi.org/10.16904/envidat.211 (2020).

  76. Argus, D. F., Peltier, W. R., Drummond, R. & Moore, A. W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int. 198, 537–563 (2014).

    Article  Google Scholar 

  77. Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophy. Res. 120, 450–487 (2015).

    Article  Google Scholar 

  78. Richard Peltier, W., Argus, D. F. & Drummond, R. Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic sdjustment model” by Purcell et al. J. Geophys. Res. 123, 2019–2028 (2018).

    Article  Google Scholar 

  79. Faurby, S. et al. MegaPast2Future/PHYLACINE_1.2: PHYLACINE Version 1.2.1. Zenodo https://doi.org/10.5281/zenodo.3690867 (2020).

  80. GBIF occurrence download. GBIF https://doi.org/10.15468/DL.6AEBCD (2023).

  81. Chamberlain, S. et al. rgbif: interface to the Global Biodiversity Information Facility API. R package v.3.7.8 (2025).

  82. Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article  Google Scholar 

  83. Pagad, S., Genovesi, P., Carnevali, L., Schigel, D. & McGeoch, M. A. Introducing the global register of introduced and invasive species. Sci. Data 5, 170202 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pagad, S. et al. Country compendium of the global register of introduced and invasive species. Sci. Data 9, 391 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Beck, H. E. et al. High-resolution (1 km) Köppen–Geiger maps for 1901–2099 based on constrained CMIP6 projections. Sci. Data 10, 724 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Allen, J. R. M. et al. Global vegetation patterns of the past 140,000 years. J. Biogeogr. 47, 2073–2090 (2020).

    Article  Google Scholar 

  87. Fischer, J.-C., Walentowitz, A. & Beierkuhnlein, C. The biome inventory—standardizing global biogeographical land units. Glob. Ecol. Biogeogr. 31, 2172–2183 (2022).

    Article  Google Scholar 

  88. The World Database of Key Biodiversity Areas (KBA, accessed 20 February 2024); www.keybiodiversityareas.org

  89. Popovic, G. et al. Four principles for improved statistical ecology. Methods Ecol. Evol. 15, 266–281 (2024).

    Article  Google Scholar 

  90. Sullivan, G. M. & Feinn, R. Using effect size—or why the P value is not enough. J. Grad. Med. Educ. 4, 279–282 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hedges, L. V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 6, 107–128 (1981).

    Article  Google Scholar 

  92. Lovakov, A. & Agadullina, E. R. Empirically derived guidelines for effect size interpretation in social psychology. Eur. J. Soc. Psychol. 51, 485–504 (2021).

    Article  Google Scholar 

  93. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  94. Crameri, F., Shephard, G. E. & Heron, P. J. The misuse of colour in science communication. Nat. Commun. 11, 5444 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Newbold, T. et al. Map of Biodiversity Intactness Index (from Global map of the Biodiversity Intactness Index, from Newbold et al. (2016) Science) [dataset resource]. Natural History Museum https://data.nhm.ac.uk/dataset/global-map-of-the-biodiversity-intactness-index-from-newbold-et-al-2016-science/resource/8531b4dc-bd44-4586-8216-47b3b8d60e85 (2016).

  96. Kerr, M. R. Processed novelty layers for climate, defaunation, floristic disruption, and total novelty exposure, from Kerr et al 2025 ‘Widespread ecological novelty across the terrestrial biosphere’ [dataset]. Zenodo https://doi.org/10.5281/zenodo.14677612 (2025).

Download references

Acknowledgements

We thank Danish National Research Foundation for economic support via Center for Ecological Dynamics in a Novel Biosphere (ECONOVO; grant number DNRF173 to J.-C.S.). We thank O. A. Baines and C. W. Davison for advice on spatial analysis and R. Ø. Pedersen for advice on generating the defaunation metrics.

Author information

Authors and Affiliations

Authors

Contributions

M.R.K., A.O., F.R. and J.-C.S. conceptualized the study, formulated the approaches used and led discussions. M.R.K. led investigation, analysed data and led interpretation with input from all authors. M.R.K. wrote the first draft. Review and editing were carried out by all authors.

Corresponding author

Correspondence to Matthew R. Kerr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Jenny McGuire, Anna Walentowitz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Total novelty exposure across the terrestrial biosphere.

The scaled total novelty exposure when all three drivers of novelty are given equal weighting. The legend shows the frequency of cells at each novelty level, with the vertical solid line marking the global median (0.35). Map is shown in an equal area Mollweide projection, cells are 10x10 km.

Extended Data Fig. 2 Key drivers of novelty across the terrestrial biosphere.

Locally novel conditions are caused by combinations of the three drivers, with cells coloured based on the relative contributions of each driver, as shown in the inset ternary plot. Map is shown in an equal area Mollweide projection, cells are 10×10 km.

Extended Data Fig. 3 The biosphere is highly exposed to multiple novelty drivers.

Novelty is shown in each map as the scaled exposure when both individual metrics are given equal weighting. The legend shows the frequency of cells at each novelty level, with the vertical solid line marking the global median. a, Climate change novelty, composed of temperature and precipitation metrics; b, defaunation novelty, composed of richness and body mass changes of mammal communities; c, floristic disruption novelty, composed of the change in intactness and the proportion of alien species in plant communities. Maps in each panel are shown in an equal area Mollweide projection. Cells in each map are 10×10 km.

Extended Data Fig. 4 Drivers of novelty are unevenly distributed between cells globally and within broad climate regions.

Ternary plots show the relative contribution of each driver, with darker colours representing a larger proportion of analysed cells for that set of contributions. Each axis is divided into 50 bins. Data is shown both within broad climate regions and for all cells (‘Global’, bottom right).

Extended Data Fig. 5 Today’s biosphere is highly novel, even when accounting for spatial bias in biodiversity data.

Maps show different ways of accounting for spatial bias in the biodiversity data which feeds into our measurement of alien species distribution. a, cells lacking biodiversity data are excluded from the analysis entirely, leaving only cells with a value for all six metrics shown. b, the alien species metric is excluded from the analysis and novelty is calculated using only the five other metrics. The legend shows the frequency of cells at each novelty level, with the vertical solid line marking the global median. Maps in each panel are shown in an equal area Mollweide projection. Cells in each map are 10×10 km.

Extended Data Fig. 6 Biomes are slightly unevenly exposed to novel conditions.

a, scaled total novelty exposure, equally weighted between climate change, defaunation and floristic disruption. b, the contribution of each individual novelty process to the total novelty varies between biomes. Biomes are taken from Fischer et al87 abbreviated as follows (with the number of 10×10 km cells in each biome in parentheses); TrEF, Tropical evergreen forest (n = 1,115,644); TrRF, Tropical raingreen forest (n = 994,819); SAV, Savanna (n = 406,931); TrGL, Tropical grassland (n = 328,622); WTW, Warm temperate woodland (n = 184,160); DES, Desert (n = 1,107,836); TBF, Temperate broadleaf evergreen forest (n = 562,133); SDES, Semi-desert (n = 350,957); TeSL, Temperate shrubland (n = 971,411); TeNF, Temperate needleleaf evergreen forest (n = 31,691); STE, Steppe (n = 134,741); TePL, Temperate Parkland (n = 266,201); TeSF, Temperate summergreen forest (n = 266,201); TeMF, Temperate mixed forest (n = 276,547); BPL, Boreal Parkland (n = 476,718); TUN, Tundra (n = 62,559); BSBF, Boreal summergreen broadleaf forest (n = 237,111); BEF, Boreal evergreen needleleaf forest (n = 653,171); BSNF, Boreal summergreen needleleaf forest (32,594); STUN, Shrub tundra (n = 445,889); BWL, Boreal woodland (291,822). Novelty drivers in b are left-to-right ordered as in the legend In the box plots the central line represents the median, the upper and lower box limits represent the first and third quartiles respectively. Whiskers extend to 1.5 times the interquartile range. Pairwise effect sizes are available as Supplemental Tables 5-8.

Extended Data Fig. 7 Drivers of novelty evenly affect areas of differing protection status.

Data shown are for each individual novelty driver – climate novelty (top), defaunation novelty (middle) and floristic disruption (bottom). Cells are divided into broad climatic regions; the global results are shown to the right of the vertical black line. Colours indicate the protection category of each cell as either a ‘protected area’ or not inside a protected area, with data from outside protected areas generated from 1000 iterations of random, equal area draws from the same climate region for each protected area In the box plots the central line represents the median, the upper and lower box limits represent the first and third quartiles respectively. Whiskers extend to 1.5 times the interquartile range. Numbers above each pair are the effect size (Hedges G) for that comparison. All pairwise comparisons are significant (in each case p < 0.0001 in a two-sided, unpaired t-test with Welch’s correction).

Extended Data Fig. 8 Drivers of novelty evenly affect areas of differing biodiversity status.

Data shown are for each individual novelty driver – climate novelty (top), defaunation novelty (middle) and floristic disruption (bottom). Cells are divided into broad climatic regions; the global results are shown to the right of the vertical black line. Colours indicate the biodiversity category of each cell as either a “Key Biodiversity Area” or not inside a Key Biodiversity Area, with data from outside Key Biodiversity Areas generated from 1000 iterations of random, equal area draws from the same climate region for each Key Biodiversity Area. In the box plots the central line represents the median, the upper and lower box limits represent the first and third quartiles respectively. Whiskers extend to 1.5 times the interquartile range. Numbers above each pair are the effect size (Hedges G) for that comparison. All pairwise comparisons are significant (in each case p < 0.0001 in a two-sided, unpaired t-test with Welch’s correction).

Supplementary information

Supplementary Information

Supplementary Tables 1–8.

Reporting Summary

Peer Review File

Supplementary Code

R files: (1) outlines the calculation of the novelty layers from raw data; (2) outlines the analysis in the paper; and (3) outlines the figure creation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerr, M.R., Ordonez, A., Riede, F. et al. Widespread ecological novelty across the terrestrial biosphere. Nat Ecol Evol 9, 589–598 (2025). https://doi.org/10.1038/s41559-025-02662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02662-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing