Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fundamental constraints on vertebrate life history are shaped by aquatic–terrestrial transitions and reproductive mode

Abstract

Vertebrate life histories evolve in response to selection imposed by abiotic and biotic environmental conditions while being limited by genetic, developmental, physiological, demographic and phylogenetic processes that constrain adaptation. Despite the well-recognized shifts in selective pressures accompanying transitions among environments, the conditions driving innovation and the consequences for life-history evolution remain outstanding questions. Here we compare the traits of vertebrates that occupy aquatic or terrestrial environments as juveniles to infer shifts in evolutionary constraints that explain differences in their life-history traits and thus their fundamental demographic rates. Our results emphasize the reduced potential for life-history diversification on land, especially that of reproductive strategies, which limits the scope of viable life-history strategies. Moreover, our study reveals differences between the evolution of viviparity in aquatic and terrestrial realms. Transitions from egg laying to live birth represent a major shift across life-history space for aquatic organisms, whereas terrestrial egg-laying organisms evolve live birth without drastic changes in life-history strategy. Whilst trade-offs in the allocation of resources place fundamental constraints on the way life histories can vary, ecological setting influences the position of species within the viable phenotypic space available for adaptive evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The relationship between body size and mortality for aquatic and terrestrial vertebrates.
Fig. 2: Movement through life-history space for aquatic and terrestrial vertebrates.
Fig. 3: Movement through life-history space for egg-laying and live-bearing vertebrates.
Fig. 4: Phylogeny of cartilaginous fishes (sharks, rays and chimaeras) and the relative position in life-history space for egg-laying and live-bearing taxa.
Fig. 5: Comparison of egg-laying and live-bearing species of bony fish, amphibians, mammals and birds.
Fig. 6: Phylogeny of reptiles and the relative position in life-history space for egg-laying and live-bearing taxa.

Similar content being viewed by others

Data availability

The dataset used in this study can be accessed via Zenodo at https://doi.org/10.5281/zenodo.14774608 (ref. 80).

Code availability

The code generated in this study can be accessed via Zenodo at https://doi.org/10.5281/zenodo.14774608 (ref. 80).

References

  1. Blackburn, D. G. Convergent evolution of viviparity, matrotrophy, and specializations for fetal nutrition in reptiles and other vertebrates. Am. Zool. 32, 313–321 (1992).

    Article  Google Scholar 

  2. Wourms, J. P. & Lombardi, J. Reflections on the evolution of piscine viviparity. Am. Zool. 32, 276–293 (1992).

    Article  Google Scholar 

  3. Kalinka, A. T. How did viviparity originate and evolve? Of conflict, co‐option, and cryptic choice. BioEssays 37, 721–731 (2015).

    Article  PubMed  Google Scholar 

  4. Vági, B. et al. The evolution of parental care in salamanders. Sci. Rep. 12, 16655 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gross, M. R. & Sargent, R. C. The evolution of male and female parental care in fishes. Am. Zool. 25, 807–822 (1985).

    Article  Google Scholar 

  6. Farmer, C. G. Parental care: the key to understanding endothermy and other convergent features in birds and mammals. Am. Nat. 155, 326–334 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Székely, T. Parental care and the evolution of terrestriality in frogs. Proc. R. Soc. B 286, 20182737 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Helmstetter, A. J. et al. Viviparity stimulates diversification in an order of fish. Nat. Commun. 7, 11271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reznick, D. N., Travis, J., Pollux, B. J. & Furness, A. I. Reproductive mode and conflict shape the evolution of male attributes and rate of speciation in the fish family Poeciliidae. Front. Ecol. Evol. 9, 639751 (2021).

    Article  Google Scholar 

  10. Miller, A. H., Stroud, J. T. & Losos, J. B. The ecology and evolution of key innovations. Trends Ecol. Evol. 38, 122–131 (2023).

    Article  PubMed  Google Scholar 

  11. Nuño de la Rosa, L. Agency in reproduction. Evol. Dev. 25, 418–429 (2023).

    Article  PubMed  Google Scholar 

  12. Blackburn, D. G. in Encyclopedia of Reproduction Vol. 4 (eds Knobil, E. & Neill, J. D.) 994–1003 (Academic Press, 1999).

  13. Recknagel, H., Kamenos, N. A. & Elmer, K. R. Evolutionary origins of viviparity consistent with palaeoclimate and lineage diversification. J. Evol. Biol. 34, 1167–1176 (2021).

    Article  PubMed  Google Scholar 

  14. Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).

  15. Roff, D. (ed.) Evolution of Life Histories: Theory and Analysis (Springer Science & Business Media, 1993).

  16. Kindsvater, H. K., Mangel, M., Reynolds, J. D. & Dulvy, N. K. Ten principles from evolutionary ecology essential for effective marine conservation. Ecol. Evol. 6, 2125–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. White, C. R., Alton, L. A., Bywater, C. L., Lombardi, E. J. & Marshall, D. J. Metabolic scaling is the product of life-history optimization. Science 377, 834–839 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Partridge, L. & Harvey, P. H. The ecological context of life history evolution. Science 241, 1449–1455 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gómez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 1217–1224 (2019).

    Article  PubMed  Google Scholar 

  20. Southwood, T. R. E. Tactics, strategies and templets. Oikos 52, 3–18 (1988).

    Article  Google Scholar 

  21. Brown, J. H., Hall, C. A. & Sibly, R. M. Equal fitness paradigm explained by a trade-off between generation time and energy production rate. Nat. Ecol. Evol. 2, 262–268 (2018).

    Article  PubMed  Google Scholar 

  22. Colbert, E. H. Evolution of the Vertebrates: A History of the Backboned Animals Through Time (John Wiley & Sons, 1955).

  23. Strathmann, R. R. Why life histories evolve differently in the sea. Am. Zool. 30, 197–207 (1990).

    Article  Google Scholar 

  24. Dawson, M. N. & Hamner, W. M. A biophysical perspective on dispersal and the geography of evolution in marine and terrestrial systems. J. R. Soc. Interface 5, 135–150 (2008).

    Article  PubMed  Google Scholar 

  25. Burgess, S. C., Baskett, M. L., Grosberg, R. K., Morgan, S. G. & Strathmann, R. R. When is dispersal for dispersal? Unifying marine and terrestrial perspectives. Biol. Rev. 91, 867–882 (2016).

    Article  PubMed  Google Scholar 

  26. Capdevila, P. et al. Longevity, body dimension and reproductive mode drive differences in aquatic versus terrestrial life‐history strategies. Funct. Ecol. 34, 1613–1625 (2020).

    Article  Google Scholar 

  27. Chase, J. M. Are there real differences among aquatic and terrestrial food webs? Trends Ecol. Evol. 15, 408–412 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Weston, N. H., Vanni, M. J. & Yang, L. H. Comparing resource pulses in aquatic and terrestrial systems. Ecology 89, 647–659 (2008).

    Article  Google Scholar 

  29. Steele, J. H., Brink, K. H. & Scott, B. E. Comparison of marine and terrestrial ecosystems: suggestions of an evolutionary perspective influenced by environmental variation. ICES J. Mar. Sci. 76, 50–59 (2019).

    Article  Google Scholar 

  30. Blackburn, D. G. Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J. Morphol. 276, 961–990 (2015).

    Article  PubMed  Google Scholar 

  31. Pyron, R. A. & Burbrink, F. T. Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. Ecol. Lett. 17, 13–21 (2014).

    Article  PubMed  Google Scholar 

  32. Uyeda, J. C., Zenil-Ferguson, R. & Pennell, M. W. Rethinking phylogenetic comparative methods. Syst. Biol. 67, 1091–1109 (2018).

    Article  PubMed  Google Scholar 

  33. Martin, K. L. & Carter, A. L. Brave new propagules: terrestrial embryos in anamniotic eggs. Integr. Comp. Biol. 53, 233–247 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North American fishes: implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).

    Article  Google Scholar 

  35. Gadgil, M. & Bossert, W. H. Life historical consequences of natural selection. Am. Nat. 104, 1–24 (1970).

    Article  Google Scholar 

  36. Leimar, O. Evolutionary change and Darwinian demons. Selection 2, 65–72 (2002).

    Article  Google Scholar 

  37. Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33, 676–688 (2018).

    Article  PubMed  Google Scholar 

  38. Charnov, E. L. On evolution of age of maturity and the adult lifespan. J. Evol. Biol. 3, 139–144 (1990).

    Article  Google Scholar 

  39. Charnov, E. L. & Berrigan, D. Dimensionless numbers and life history evolution: age of maturity versus the adult lifespan. Evol. Ecol. 4, 273–275 (1990).

    Article  Google Scholar 

  40. Darwin, C. R. The Descent of Man, and Selection in Relation to Sex 2nd edn (Appleton, 1874).

  41. Williams, G. C. Adaptation and Natural Selection (Princeton Univ. Press, 1966).

  42. Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).

    Article  Google Scholar 

  43. Simpson, E. H. The interpretation of interaction in contingency tables. J. R. Stat. Soc. B 13, 238–241 (1951).

    Article  Google Scholar 

  44. Reznick, D., Nunney, L. & Tessier, A. Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol. Evol. 15, 421–425 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Goodwin, N. B., Dulvy, N. K. & Reynolds, J. D. Life-history correlates of the evolution of live bearing in fishes. Philos. Trans. R. Soc. Lond. B 357, 259–267 (2002).

    Article  Google Scholar 

  46. Winemiller, K. O. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81, 225–241 (1989).

    Article  PubMed  Google Scholar 

  47. Salguero-Gómez, R. et al. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).

    Article  PubMed  Google Scholar 

  48. Gross, M. R. & Shine, R. Parental care and mode of fertilization in ectothermic vertebrates. Evolution 35, 775–793 (1981).

    Article  PubMed  Google Scholar 

  49. Beck, C. W. Mode of fertilization and parental care in anurans. Anim. Behav. 55, 439–449 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Benun Sutton, F. & Wilson, A. B. Where are all the moms? External fertilization predicts the rise of male parental care in bony fishes. Evolution 73, 2451–2460 (2019).

    Article  PubMed  Google Scholar 

  51. Orr, T. J. & Brennan, P. L. Sperm storage: distinguishing selective processes and evaluating criteria. Trends Ecol. Evol. 30, 261–272 (2015).

    Article  PubMed  Google Scholar 

  52. Lyons, K., Kacev, D. & Mull, C. G. An inconvenient tooth: evaluating female choice in multiple paternity using an evolutionarily and ecologically important vertebrate clade. Mol. Ecol. 30, 1574–1593 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Winemiller, K. O. & Rose, K. A. Why do most fish produce so many tiny offspring? Am. Nat. 142, 585–603 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Olsson, K. H., Gislason, H. & Andersen, K. H. Differences in density-dependence drive dual offspring size strategies in fish. J. Theor. Biol. 407, 118–127 (2016).

    Article  PubMed  Google Scholar 

  55. Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl Acad. Sci. USA 109, 19310–19314 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuparinen, A. & Festa-Bianchet, M. Harvest-induced evolution: insights from aquatic and terrestrial systems. Philos. Trans. R. Soc. B 372, 20160036 (2017).

    Article  Google Scholar 

  57. Chang, C. C., Moiron, M., Sánchez‐Tójar, A., Niemelä, P. T. & Laskowski, K. L. What is the meta‐analytic evidence for life‐history trade‐offs at the genetic level? Ecol. Lett. 27, e14354 (2023).

    Article  PubMed  Google Scholar 

  58. Shine, R. The evolution of large body size in females: a critique of Darwin’s “fecundity advantage” model. Am. Nat. 131, 124–131 (1988).

    Article  Google Scholar 

  59. Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, C. F., Wu, S., Martin, T. & Luo, Z. X. A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature 500, 163–167 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204, 23–31 (2016).

    Article  Google Scholar 

  65. Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).

    Article  PubMed  Google Scholar 

  66. Thomson, S. A. Turtles of the world: annotated checklist and atlas of taxonomy, synonymy, distribution, and conservation status. Phyllomedusa 20, 225–228 (2021).

    Article  Google Scholar 

  67. Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stein, R. W. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol. 2, 288–298 (2018).

    Article  PubMed  Google Scholar 

  69. Froese, R. 1992 Progress Report on FishBase ICLARM Contribution No. 852 (ICLARM, 1992).

  70. Mull, C. G. et al. Sharkipedia: a curated open access database of shark and ray life history traits and abundance time-series. Sci. Data 9, 559 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Meiri, S. Traits of lizards of the world: variation around a successful evolutionary design. Glob. Ecol. Biogeogr. 27, 1168–1172 (2018).

    Article  Google Scholar 

  73. Myhrvold, N. P. et al. An amniote life‐history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109–3109 (2015).

    Article  Google Scholar 

  74. Abrams, P. A. & Rowe, L. The effects of predation on the age and size of maturity of prey. Evolution 50, 1052–1061 (1996).

    Article  PubMed  Google Scholar 

  75. Sharpe, D. M. & Hendry, A. P. Life history change in commercially exploited fish stocks: an analysis of trends across studies. Evol. Appl. 2, 260–275 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Goolsby, E. W., Ane, C. & Bruggeman, J. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).

    Article  Google Scholar 

  77. Revell, L. J. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12, e16505 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ives, A. R. & Li, D. rr2: an R package to calculate R2s for regression models. J. Open Source Softw. 3, 1028 (2018).

    Article  Google Scholar 

  79. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024); https://www.R-project.org/

  80. Brooks, G. C. et al. geobro1992/VTparity: Code for: Fundamental constraints on vertebrate life history are shaped by aquatic-terrestrial transitions and reproductive mode. Zenodo https://doi.org/10.5281/zenodo.14774608 (2025).

  81. Smith, M. R. ms609/Ternary: v2.3.3. Zenodo https://doi.org/10.5281/zenodo.1068996 (2017).

Download references

Acknowledgements

We would like to thank J. Berman and T. Stephenson for help compiling trait data. We would like to thank the Department of Fish and Wildlife Conservation and the Department of Biological Sciences at Virginia Tech for financial and logistical support.

Author information

Authors and Affiliations

Authors

Contributions

G.C.B. and H.K.K. conceived the idea. G.C.B., H.M.C. and C.G.M. compiled and proofed the data. J.C.U. designed the analyses. G.C.B., J.C.U. and N.J.B. performed the analyses and confirmed the reproducibility of the code and results. G.C.B., J.C.U. and H.K.K. wrote the manuscript. All authors revised and approved the final manuscript.

Corresponding author

Correspondence to George C. Brooks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Pol Capdevila, R. Alexander Pyron and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Distribution of vertebrate body sizes and mortality rates across egg-laying and live-bearing taxa.

Distribution of egg-laying (turquoise) and live-bearing (orange) vertebrate a) body sizes, b) juvenile mortality, and c) adult mortality. Points are colored by reproductive mode. The number of species in each clade for which trait data is available is provided at the bottom of the panel.

Extended Data Fig. 2 Distribution of aquatic and terrestrial species in relation to body size and adult mortality, for different levels of lifetime reproductive output (LRO).

Adult mortality is estimated as the inverse of age at maturity, and lifetime reproductive output is the product of clutch size, longevity, and the frequency of reproductive bouts. Points are colored by reproductive mode.

Extended Data Fig. 3 The relationship between body size and juvenile mortality, adult mortality, and lifetime mortality for aquatic and terrestrial species.

The relationship between body size and juvenile mortality, adult mortality, and lifetime mortality for aquatic (green) and terrestrial (orange) species. This figure is equivalent to Fig. 3 in the main text except that predictions from the linear regressions are corrected for phylogeny using the phylolm package.

Extended Data Fig. 4 Data coverage across vertebrate clades.

Bars show the proportion of species with published information on terrestriality, parity mode, body size, lifetime reproductive output (juvenile mortality), and age at maturity (adult mortality).

Extended Data Fig. 5 A conceptual diagram of the discrete-space evolutionary model in ternary space.

In this modelling framework, species can evolve to neighboring patches within the defined life-history space or can transition between states. The two state spaces (triangles) can represent egg-laying and live-bearing reproductive modes or aquatic and terrestrial environments.

Extended Data Table 1 Correlation between life-history axes
Extended Data Table 2 Phylogenetic regressions of mortality as a function of body size and habitat
Extended Data Table 3 Phylogenetic signal estimates for life history variables
Extended Data Table 4 Model fits and parameter estimates for ternary gradient models
Extended Data Table 5 Summarized life-history traits for each vertebrate clade

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Table 1 and Supplementary Figs. 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooks, G.C., Uyeda, J.C., Bone, N.J. et al. Fundamental constraints on vertebrate life history are shaped by aquatic–terrestrial transitions and reproductive mode. Nat Ecol Evol 9, 857–866 (2025). https://doi.org/10.1038/s41559-025-02663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02663-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing