Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Repeated behavioural evolution is associated with convergence of gene expression in cavity-nesting songbirds

Abstract

Uncovering the genomic bases of phenotypic adaptation is a major goal in biology, but this has been hard to achieve for complex behavioural traits. Here we leverage the repeated, independent evolution of obligate cavity nesting in birds to test the hypothesis that pressure to compete for a limited breeding resource has facilitated convergent evolution in behaviour, hormones and gene expression. We used an integrative approach, combining aggression assays in the field, testosterone measures and transcriptome-wide analyses of the brain in wild-captured females and males. Our experimental design compared species pairs across five avian families, each including one obligate cavity-nesting species and a related species with a more flexible nest strategy. We find behavioural convergence, with higher levels of territorial aggression in obligate cavity nesters, particularly among females. Across species, levels of testosterone in circulation were not associated with nest strategy nor aggression. Phylogenetic analyses of individual genes and co-regulated gene networks revealed more shared patterns of brain gene expression than expected by drift, although the scope of convergent gene expression evolution was limited to a small percentage of the genome. When comparing our results to other studies that did not use phylogenetic methods, we suggest that accounting for shared evolutionary history may reduce the number of genes inferred as convergently evolving. Altogether, we find that behavioural convergence in response to shared ecological pressures is associated with largely independent evolution of gene expression across different avian families, punctuated by a narrow set of convergently evolving genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Obligate cavity nesters displayed more overt territorial aggression.
Fig. 2: Concordance in differential expression based on RRHO.
Fig. 3: Tan4 gene network associated with obligate cavity nesting.
Fig. 4: Gene networks associated with female aggression.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Supplementary Information, on Github via Zenodo at https://doi.org/10.5281/zenodo.14715061 (ref. 86), and via Figshare repository at https://doi.org/10.6084/m9.figshare.26367061 (ref. 87). Raw sequence reads and count data can be obtained from the Gene Expression Omnibus database (GEO accession number GSE244480).

Code availability

Scripts for processing and analysing data are available on Github via Zenodo at https://doi.org/10.5281/zenodo.14715061 (ref. 86).

References

  1. Darwin, C. R. On the Origin of Species (Harvard Univ. Press, 1859).

  2. Rosenblum, E. B., Parent, C. E. & Brandt, E. E. The molecular basis of phenotypic convergence. Annu. Rev. Ecol. Evol. Syst. 45, 203–226 (2014).

    Google Scholar 

  3. Arendt, J. & Reznick, D. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol. Evol. 23, 26–32 (2008).

    PubMed  Google Scholar 

  4. Gallant, J. R. & O’Connell, L. A. Studying convergent evolution to relate genotype to behavioral phenotype. J. Exp. Biol. 223, jeb213447 (2020).

    PubMed  PubMed Central  Google Scholar 

  5. Jourjine, N. & Hoekstra, H. E. Expanding evolutionary neuroscience: insights from comparing variation in behavior. Neuron 109, 1084–1099 (2021).

    CAS  PubMed  Google Scholar 

  6. Rosvall, K. A. Evolutionary endocrinology and the problem of Darwin’s tangled bank. Horm. Behav. 146, 105246 (2022).

    CAS  PubMed  Google Scholar 

  7. Rittschof, C. C. et al. Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. Proc. Natl Acad. Sci. USA 111, 17929–17934 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Toth, A. L. et al. Brain transcriptomic analysis in paper wasps identifies genes associated with behaviour across social insect lineages. Proc. Biol. Sci. 277, 2139–2148 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pfenning, A. R. et al. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346, 1256846 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Mikheyev, A. S. & Linksvayer, T. A. Genes associated with ant social behavior show distinct transcriptional and evolutionary patterns. Elife 4, e04775 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Warner, M. R., Qiu, L., Holmes, M. J., Mikheyev, A. S. & Linksvayer, T. A. Convergent eusocial evolution is based on a shared reproductive groundplan plus lineage-specific plastic genes. Nat. Commun. 10, 2651 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Young, R. L. et al. Conserved transcriptomic profiles underpin monogamy across vertebrates. Proc. Natl Acad. Sci. USA 116, 1331–1336 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pease, J. B. et al. Layered evolution of gene expression in ‘superfast’ muscles for courtship. Proc. Natl Acad. Sci. USA 119, e2119671119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Harrison, M. C. et al. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat. Ecol. Evol. 2, 557–566 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Johnson, Z. V. et al. Cellular profiling of a recently-evolved social behavior in cichlid fishes. Nat. Commun. 14, 4891 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nelson, R. J. & Trainor, B. C. Neural mechanisms of aggression. Nat. Rev. Neurosci. 8, 536–546 (2007).

    CAS  PubMed  Google Scholar 

  18. Wingfield, J. C., Hegner, R. E., Dufty, J., Alfred, M. & Ball, G. F. The ‘Challenge Hypothesis’: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am. Nat. 136, 829–846 (1990).

    Google Scholar 

  19. Horton, B. M. et al. Estrogen receptor alpha polymorphism in a species with alternative behavioral phenotypes. Proc. Natl Acad. Sci. USA 111, 1443–1448 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosvall, K. A. et al. Neural sensitivity to sex steroids predicts individual differences in aggression: implications for behavioural evolution. Proc. Biol. Sci. 279, 3547–3555 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Saul, M. C. et al. Cross-species systems analysis of evolutionary toolkits of neurogenomic response to social challenge. Genes Brain Behav. 18, e12502 (2019).

    PubMed  Google Scholar 

  22. Zhang-James, Y. et al. An integrated analysis of genes and functional pathways for aggression in human and rodent models. Mol. Psychiatry 24, 1655–1667 (2019).

    CAS  PubMed  Google Scholar 

  23. Kelly, A. M. & Wilson, L. C. Aggression: perspectives from social and systems neuroscience. Horm. Behav. 123, 104523 (2020).

    PubMed  Google Scholar 

  24. O’Connell, L. A. & Hofmann, H. A. Evolution of a vertebrate social decision-making network. Science 336, 1154–1157 (2012).

    PubMed  Google Scholar 

  25. Rosvall, K. A. Proximate perspectives on the evolution of female aggression: good for the gander, good for the goose? Philos. Trans. R. Soc. Lond. B 368, 20130083 (2013).

    Google Scholar 

  26. Clutton-Brock, T. Sexual selection in males and females. Science 318, 1882–1885 (2007).

    CAS  PubMed  Google Scholar 

  27. Rosvall, K. A. Intrasexual competition in females: evidence for sexual selection? Behav. Ecol. 22, 1131–1140 (2011).

    PubMed  PubMed Central  Google Scholar 

  28. Wright, A. E. & Mank, J. E. The scope and strength of sex-specific selection in genome evolution. J. Evol. Biol. 26, 1841–1853 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Goymann, W. & Wingfield, J. C. Male-to-female testosterone ratios, dimorphism, and life history—what does it really tell us? Behav. Ecol. 25, 685–699 (2014).

    Google Scholar 

  30. Rosvall, K. A., Bentz, A. B. & George, E. M. How research on female vertebrates contributes to an expanded challenge hypothesis. Horm. Behav. 123, 104565 (2020).

    CAS  PubMed  Google Scholar 

  31. Smiley, K. O. et al. Beyond a biased binary: a perspective on the misconceptions, challenges, and implications of studying females in avian behavioral endocrinology. Front. Physiol. 13, 970603 (2022).

    PubMed  PubMed Central  Google Scholar 

  32. Duckworth, R. A. Adaptive dispersal strategies and the dynamics of a range expansion. Am. Nat. 172, S4–S17 (2008).

    PubMed  Google Scholar 

  33. Leffelaar, D. & Robertson, R. J. Nest usurpation and female competition for breeding opportunities by tree swallows. Wilson Bull. 97, 221–224 (1985).

    Google Scholar 

  34. Merilä, J. & Wiggins, D. A. Interspecific competition for nest holes causes adult mortality in the collared flycatcher. Condor 97, 445–450 (1995).

    Google Scholar 

  35. Albers, A. N., Jones, J. A. & Siefferman, L. Behavioral differences among eastern bluebird populations could be a consequence of tree swallow presence: a pilot study. Front. Ecol. Evol 5 (2017).

  36. Krieg, C. A. & Getty, T. Fitness benefits to intrasexual aggression in female house wrens, Troglodytes aedon. Anim. Behav. 160, 79–90 (2020).

    Google Scholar 

  37. Rosvall, K. A. Sexual selection on aggressiveness in females: evidence from an experimental test with tree swallows. Anim. Behav. 75, 1603–1610 (2008).

    Google Scholar 

  38. Rubenstein, D. R. & Lovette, I. J. Reproductive skew and selection on female ornamentation in social species. Nature 462, 786–789 (2009).

    CAS  PubMed  Google Scholar 

  39. Schuppe, E. R., Sanin, G. D. & Fuxjager, M. J. The social context of a territorial dispute differentially influences the way individuals in breeding pairs coordinate their aggressive tactics. Behav. Ecol. Sociobiol. 70, 673–682 (2016).

    Google Scholar 

  40. Lipshutz, S. E. & Rosvall, K. A. Nesting strategy shapes territorial aggression but not testosterone: a comparative approach in female and male birds. Horm. Behav. 133, 104995 (2021).

    CAS  PubMed  Google Scholar 

  41. Fang, Y. T., Tuanmu, M. N. & Hung, C. M. Asynchronous evolution of interdependent nest characters across the avian phylogeny. Nat. Commun. 9, 1863 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Zenil-Ferguson, R., McEntee, J. P., Burleigh, J. G. & Duckworth, R. A. Linking ecological specialization to its macroevolutionary consequences: an example with passerine nest type. Syst. Biol. 72, 294–306 (2023).

    PubMed  Google Scholar 

  43. Jawor, J. M. et al. Seasonal and individual variation in response to GnRH challenge in male dark-eyed juncos (Junco hyemalis). Gen. Comp. Endocrinol. 149, 182–189 (2006).

    CAS  PubMed  Google Scholar 

  44. Rosvall, K. A., Bergeon Burns, C. M., Jayaratna, S. P. & Ketterson, E. D. Divergence along the gonadal steroidogenic pathway: implications for hormone-mediated phenotypic evolution. Horm. Behav. 84, 1–8 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bukhari, S. A. et al. Temporal dynamics of neurogenomic plasticity in response to social interactions in male threespined sticklebacks. PLoS Genet. 13, e1006840 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Goodson, J. L. The vertebrate social behavior network: evolutionary themes and variations. Horm. Behav. 48, 11–22 (2005).

    PubMed  PubMed Central  Google Scholar 

  47. Stelzer, G. et al.The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 54, 1.30.31–31.30.33 (2016).

    Google Scholar 

  48. Ghanem, N. et al. The Rb/E2F pathway modulates neurogenesis through direct regulation of the Dlx1/Dlx2 bigene cluster. J. Neurosci. 32, 8219–8230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chandra, B., Voas, M. G., Davies, E. L. & Roberts-Galbraith, R. H. Ets-1 transcription factor regulates glial cell regeneration and function in planarians. Development 150, dev201666 (2023).

    PubMed  PubMed Central  Google Scholar 

  50. Hung, H. H. et al. Selective involvement of UGGT variant: UGGT2 in protecting mouse embryonic fibroblasts from saturated lipid-induced ER stress. Proc. Natl Acad. Sci. USA 119, e2214957119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yan, C. et al. Correction: IRE1 promotes neurodegeneration through autophagy-dependent neuron death in the Drosophila model of Parkinson’s disease. Cell Death Dis. 11, 150 (2020).

    PubMed  PubMed Central  Google Scholar 

  52. Zhu, J. Y., Chen, M., Mu, W. J., Luo, H. Y. & Guo, L. The functional role of Higd1a in mitochondrial homeostasis and in multiple disease processes. Genes Dis. 10, 1833–1845 (2023).

    CAS  PubMed  Google Scholar 

  53. Crombie, E. M., Cleverley, K., Timmers, H. T. M. & Fisher, E. M. C. The roles of TAF1 in neuroscience and beyond. R. Soc. Open Sci. 11, 240790 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Baran, N. M., McGrath, P. T. & Streelman, J. T. Applying gene regulatory network logic to the evolution of social behavior. Proc. Natl Acad. Sci. USA 114, 5886–5893 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bentz, A. B. et al. Experimental competition induces immediate and lasting effects on the neurogenome in free-living female birds. Proc. Natl Acad. Sci. USA 118, e2016154118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Filby, A. L., Paull, G. C., Hickmore, T. F. & Tyler, C. R. Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics 11, 498 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Storz, J. F. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev. Genet. 17, 239–250 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155–183 (1983).

    Google Scholar 

  59. Harts, A. M., Booksmythe, I. & Jennions, M. D. Mate guarding and frequent copulation in birds: a meta-analysis of their relationship to paternity and male phenotype. Evolution 70, 2789–2808 (2016).

    PubMed  Google Scholar 

  60. Drury, J. P., Cowen, M. C. & Grether, G. F. Competition and hybridization drive interspecific territoriality in birds. Proc. Natl Acad. Sci. USA 117, 12923–12930 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Husak, J. F. et al. Life history and environment predict variation in testosterone across vertebrates. Evolution 75, 1003–1010 (2021).

    PubMed  Google Scholar 

  62. Goymann, W., Moore, I. T. & Oliveira, R. F. Challenge hypothesis 2.0: a fresh look at an established idea. BioScience 69, 432–442 (2019).

    Google Scholar 

  63. Wingfield, J. C., Ramenofsky, M., Hegner, R. E. & Ball, G. F. Whither the challenge hypothesis? Horm. Behav. 123, 104588 (2020).

    CAS  PubMed  Google Scholar 

  64. Lischinsky, J. E. & Lin, D. Neural mechanisms of aggression across species. Nat. Neurosci. 23, 1317–1328 (2020).

    CAS  PubMed  Google Scholar 

  65. Lipshutz, S. E., George, E. M., Bentz, A. B. & Rosvall, K. A. Evaluating testosterone as a phenotypic integrator: from tissues to individuals to species. Mol. Cell. Endocrinol. 496, 110531 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fischer, E. K., Song, Y., Hughes, K. A., Zhou, W. & Hoke, K. L. Nonparallel transcriptional divergence during parallel adaptation. Mol. Ecol. 30, 1516–1530 (2021).

    PubMed  Google Scholar 

  67. Renn, S. C. P. et al. Gene expression signatures of mating system evolution. Genome 61, 287–297 (2018).

    PubMed  Google Scholar 

  68. Alaux, C. et al. Honey bee aggression supports a link between gene regulation and behavioral evolution. Proc. Natl Acad. Sci. USA 106, 15400–15405 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mullon, C., Wright, A. E., Reuter, M., Pomiankowski, A. & Mank, J. E. Evolution of dosage compensation under sexual selection differs between X and Z chromosomes. Nat. Commun. 6, 7720 (2015).

    CAS  PubMed  Google Scholar 

  70. Grath, S. & Parsch, J. Sex-biased gene expression. Annu Rev. Genet 50, 29–44 (2016).

    CAS  PubMed  Google Scholar 

  71. Fridolfsson, A.-K. & Ellegren, H. A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 30, 116–121 (1999).

    Google Scholar 

  72. Soma, K. K., Schlinger, B. A., Wingfield, J. C. & Saldanha, C. J. Brain aromatase, 5 alpha-reductase, and 5 beta-reductase change seasonally in wild male song sparrows: relationship to aggressive and sexual behavior. J. Neurobiol. 56, 209–221 (2003).

    CAS  PubMed  Google Scholar 

  73. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Plaisier, S. B., Taschereau, R., Wong, J. A. & Graeber, T. G. Rank–rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res. 38, e169–e169 (2010).

    PubMed  PubMed Central  Google Scholar 

  77. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).

    Google Scholar 

  78. Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2018).

    PubMed Central  Google Scholar 

  79. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 

  81. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  PubMed  Google Scholar 

  82. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS  PubMed  Google Scholar 

  83. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2011).

    Google Scholar 

  84. Seabold, S. & Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 92–96 (2010).

  85. Kolberg, L. et al. g:Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 51, W207–W212 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lipshutz, S. & Hibbins, M. slipshut/CavityNesting: cavity nesting github release (v1.1.1). Zenodo https://doi.org/10.5281/zenodo.14715061 (2025).

  87. Lipshutz, S. et al. Repeated behavioral evolution is associated with convergence of gene expression in cavity-nesting songbirds. Figshare https://doi.org/10.6084/m9.figshare.26367061 (2024).

  88. Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

For facilitating fieldwork, we thank the Indiana Department of Natural Resources; Indiana University’s Research and Teaching Preserve; T. Rothfus and C. Hagie at Therkilsden Field station; A. Fournier and S. Havera at Forbes Field Station; and J. Hoover, N. Antonson, H. Scharf and A. Funk. For vocal stimuli, we thank M. Wilkins, D. Reichard, C. Krieg and E. Chen. Thanks to E. Mueller for help with 3D printing; S. Nallu and J. Huang for TapeStation and library preparation; E. D. Curole and J. K. for assistance in the lab; and B. Young for assistance with data analysis. This work was funded by the US National Science Foundation grant DBI-1907134 (S.E.L.), DBI-2146866 (M.W.H.), IOS-1953226 (M.E.H.) and CAREER grant IOS-1942192 (K.A.R.), as well as support from Indiana University Biology, Loyola Biology and Duke Biology.

Author information

Authors and Affiliations

Authors

Contributions

S.E.L. and K.A.R. conceived of the study; S.E.L. led the data collection, supported by A.B.B., A.M.T., E.M.G, M.E.H., M.J.W., S.J.T, S.E.W., T.A.E. and W.M.S.; S.E.L., M.S.H., A.B.B., A.M.B., D.B.R., Q.K.T., M.W.H. and K.A.R. analysed and interpreted the data; S.E.L., M.S.H. and K.A.R. wrote the paper, and all authors contributed to revisions. The manuscript reflects the contributions and ideas of all authors.

Corresponding authors

Correspondence to Sara E. Lipshutz or Kimberly A. Rosvall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Natasha Bloch, Chih-Ming Hung and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–12, Tables 1–13 and Figs. 1–20.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipshutz, S.E., Hibbins, M.S., Bentz, A.B. et al. Repeated behavioural evolution is associated with convergence of gene expression in cavity-nesting songbirds. Nat Ecol Evol 9, 845–856 (2025). https://doi.org/10.1038/s41559-025-02675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02675-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing