Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using species ranges and macroeconomic data to fill the gap in costs of biological invasions

Abstract

Biological invasions threaten global biodiversity, human well-being and economies. Many regional and taxonomic syntheses of monetary costs have been produced recently but with important knowledge gaps owing to uneven geographic and taxonomic research intensity. Here we combine species distribution models, macroeconomic data and the InvaCost database to produce the highest resolution spatio-temporal cost estimates currently available to bridge these gaps. From a subset of 162 invasive species with ‘highly reliable’ documented costs at the national level, our interpolation focuses on countries that have not reported any costs despite the known presence of invasive species. This analysis demonstrates a substantial underestimation, with global costs potentially estimated to be 1,646% higher for these species than previously recorded. This discrepancy was uneven geographically and taxonomically, respectively peaking in Europe and for plants. Our results showed that damage costs were primarily driven by gross domestic product, human population size, agricultural area and environmental suitability, whereas management expenditure correlated with gross domestic product and agriculture areas. We also found a lag time for damage costs of 46 years, but management spending was not delayed. The methodological predictive approach of this study provides a more complete view of the economic dimensions of biological invasions and narrows the global disparity in invasion cost reporting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the methodology used to interpolate monetary costs.
Fig. 2: Global economic cost associated with invasive species at the country level.
Fig. 3: Monetary cost of invasive species by taxonomic order and type of cost.
Fig. 4: Monetary costs of invasive species per unit area.

Similar content being viewed by others

Data availability

All data generated and analysed during this study are publicly available and can be accessed via GitHub at https://github.com/IsmaSA/Invacost_SDM. Source data are provided with this paper.

Code availability

All codes generated during this study are available and can be accessed via GitHub at https://github.com/IsmaSA/Invacost_SDM.

References

  1. Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).

    Article  PubMed  Google Scholar 

  2. Blackburn, T. M., Bellard, C. & Ricciardi, A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 17, 203–207 (2019).

    Article  Google Scholar 

  3. Roy, H. E., Pauchard, A., Stoett, P. & Renard Truong, T. Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). Zenodo https://doi.org/10.5281/zenodo.7430682 (2023).

  4. Turbelin, A. J. et al. Biological invasions are as costly as natural hazards. Perspect. Ecol. Conserv. 21, 143–150 (2023).

    Google Scholar 

  5. Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Ahmed, D. A. et al. Recent advances in availability and synthesis of the economic costs of biological invasions. Bioscience 73, 560–574 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haubrock, P. J. et al. Geographic and taxonomic trends of rising biological invasion costs. Sci. Total Environ. 817, 152948 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Diagne, C. et al. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7, 277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crystal-Ornelas, R. et al. Economic costs of biological invasions within North America. NeoBiota 67, 485–510 (2021).

    Article  Google Scholar 

  11. Cuthbert, R. N. et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 775, 145238 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Angulo, E. et al. Non-English languages enrich scientific knowledge: the example of economic costs of biological invasions. Sci. Total Environ. 775, 144441 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Nuñez, M. A., Chiuffo, M. C., Pauchard, A. & Zenni, R. D. Making ecology really global. Trends Ecol. Evol. 36, 766–769 (2021).

    Article  PubMed  Google Scholar 

  14. Elith, J. In Invasive Species: Risk Assessment and Management (eds. Robinson, A. P. et al.) (Cambridge Univ. Press, 2017).

  15. Della Venezia, L., Samson, J. & Leung, B. The rich get richer: invasion risk across North America from the aquarium pathway under climate change. Divers. Distrib. 24, 285–296 (2018).

    Article  Google Scholar 

  16. Parker, I. M. et al. Impact: toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19 (1999).

    Article  Google Scholar 

  17. Essl, F. et al. Potential sources of time lags in calibrating species distribution models. J. Biogeogr. 51, 89–102 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Henry, M. et al. Unveiling the hidden economic toll of biological invasions in the European Union. Environ. Sci. Eur. 35, 1–16 (2023).

    Article  Google Scholar 

  19. Courtois, P., Figuieres, C., Mulier, C. & Weill, J. A cost–benefit approach for prioritizing invasive species. Ecol. Econ. 146, 607–620 (2018).

    Article  Google Scholar 

  20. Newman, R. & Noy, I. The global costs of extreme weather that are attributable to climate change. Nat. Commun. 14, 6103 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Briski, E., Drake, D. A. R., Chan, F. T., Bailey, S. A. & MacIsaac, H. J. Variation in propagule and colonization pressures following rapid human‐mediated transport: implications for a universal assemblage‐based management model. Limnol. Oceanogr. 59, 2068–2076 (2014).

    Article  Google Scholar 

  22. Turbelin, A. J. et al. Biological invasions as burdens to primary economic sectors. Glob. Environ. Change 87, 102858 (2024).

    Article  Google Scholar 

  23. Boscutti, F., Sigura, M., De Simone, S. & Marini, L. Exotic plant invasion in agricultural landscapes: a matter of dispersal mode and disturbance intensity. Appl. Veg. Sci. 21, 250–257 (2018).

    Article  Google Scholar 

  24. Soto, I. et al. The wild cost of invasive feral animals worldwide. Sci. Total Environ. 912, 169281 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, S., Deng, T., Zhang, J. & Li, Y. Global economic costs of mammal invasions. Sci. Total Environ. 857, 159479 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Ahmed, D. A. et al. Managing biological invasions: the cost of inaction. Biol. Invasions 24, 1927–1946 (2022).

    Article  Google Scholar 

  28. Haubrock, P. J., Cuthbert, R. N., Ricciardi, A., Diagne, C. & Courchamp, F. Economic costs of invasive bivalves in freshwater ecosystems. Diversity Distrib. 28, 1010–1021 (2022).

    Article  Google Scholar 

  29. Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article  PubMed  Google Scholar 

  30. Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).

    Article  Google Scholar 

  31. Bradshaw, C. J. et al. Damage costs from invasive species exceed management expenditure in nations experiencing lower economic activity. Ecol. Econ. 220, 108166 (2024).

    Article  Google Scholar 

  32. Hudgins, E. J. et al. Unevenly distributed biological invasion costs among origin and recipient regions. Nat. Sustain. 6, 1113–1124 (2023).

    Article  Google Scholar 

  33. Novoa, A. et al. Global costs of plant invasions must not be underestimated. NeoBiota 69, 75–78 (2021).

    Article  Google Scholar 

  34. Zhang, C. & Boyle, K. J. The effect of an aquatic invasive species (Eurasian watermilfoil) on lakefront property values. Ecol. Econ. 70, 394–404 (2010).

    Article  Google Scholar 

  35. Lazzaro, L. et al. Invasive alien plant impacts on human health and well-being. in Invasive Species and Human Health (eds. Mazza, G. & Tricario, E.) pp. 16–33 (CAB International, 2018).

  36. Cuthbert, R. et al. Economic impact disharmony in global biological invasions. Sci. Total Environ. 913, 169622 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Heringer, G. et al. Economic costs of invasive non-native species in urban areas: an underexplored financial drain. Sci. Total Environ. 917, 170336 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Soto, I. et al. Global economic costs of herpetofauna invasions. Sci. Rep. 12, 10829 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parkes, J. P. & Panetta, F. D. Eradication of invasive species: progress and emerging issues in the 21st century. in Invasive Species Management. A Handbook of Principles and Techniques. 47–60 (Oxford Univ. Press, 2009).

  40. Nguyen, D. & Leung, B. How well do species distribution models predict occurrences in exotic ranges? Glob. Ecol. Biogeogr. 31, 1051–1065 (2022).

    Article  Google Scholar 

  41. Kourantidou, M. et al. The economic costs, management and regulation of biological invasions in the Nordic countries. J. Environ. Manag. 324, 116374 (2022).

    Article  Google Scholar 

  42. Leroy, B. et al. Analysing economic costs of invasive alien species with the invacost R package. Methods Ecol. Evol. 13, 1930–1937 (2022).

    Article  Google Scholar 

  43. Global Biodiversity Information Facility (GBIF, 2023); https://www.gbif.org

  44. Phillips, S. J. et al. Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecol. Appl. 19, 181–197 (2009).

    Article  PubMed  Google Scholar 

  45. Barbet‐Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo‐absences for species distribution models: how, where and how many? Methods Ecol. Evolution 3, 327–338 (2012).

    Article  Google Scholar 

  46. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  47. Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 1–15 (2018).

    Article  Google Scholar 

  48. Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E. & Jetz, W. Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Sci. Data 8, 307 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. CIESIN. Global Roads Open Access Data Set, Version 1 (gROADSv1) (NASA Socioeconomic Data and Applications Center, 2013); https://doi.org/10.7927/H4VD6WCT

  50. Mainali, K. P. et al. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Glob. Change Biol. 21, 4464–4480 (2015).

    Article  Google Scholar 

  51. Naimi, B., Skidmore, A. K., Groen, T. A. & Hamm, N. A. S. On uncertainty in species distribution modelling. ITC dissertation, Univ. Twente (2015).

  52. Wood, S. mgcv: Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL (Chapman and Hall/CRC, 2017).

  53. Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open‐source release of Maxent. Ecography 40, 887–893 (2017).

    Article  Google Scholar 

  54. Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Merow, C. et al. What do we gain from simplicity versus complexity in species distribution models? Ecography 37, 1267–1281 (2014).

    Article  Google Scholar 

  56. Briski, E. et al. Does non-native diversity mirror earth’s biodiversity. Glob. Ecol. Biodivers. 33, 48–62 (2024).

    Article  Google Scholar 

  57. World Development Indicators (World Bank, 2023); www.data.worldbank.org

  58. R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2023); https://www.R-project.org/

Download references

Acknowledgements

We thank C. J. A. Bradshaw for his comments on an earlier version of this manuscript. R.L.M. was supported by the Alexander von Humboldt Foundation. R.N.C. is funded by the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Contributions

I.S. and B. Leung conceived the study, led on coding the analyses and data interpretation, designed and assembled the figures, designed the methodology, wrote the original draft and revised subsequent drafts. The following authors participated in the data acquisition or provided and approved the final draft: P.C., A.P., E.T., E.M., E.A., C.B., E.B., M.B., R.N.C., A.K., M.K., R.L.M., B. Leroy, P.J.H. and F.C.

Corresponding authors

Correspondence to Ismael Soto or Brian Leung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Daniel Silva and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Tables 1–8 and Materials 1–3.

Reporting Summary

Peer Review File

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto, I., Courtois, P., Pili, A. et al. Using species ranges and macroeconomic data to fill the gap in costs of biological invasions. Nat Ecol Evol 9, 1021–1030 (2025). https://doi.org/10.1038/s41559-025-02697-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02697-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing