Abstract
The relationship between landscape fragmentation and vegetation resilience is uncertain. Here we use multiple satellite-based tree cover data and vegetation indices to quantify the apparent effects of fragmentation on global forest resilience and potential mechanisms thereof. We measure fragmentation as edge density, patch density and mean patch area of tree cover patches, and measure resilience as one-lag temporal autocorrelation of vegetation indices. We find a statistically significant (P < 0.05) fragmentation–resilience relationship in about 77% of fragmented forests, but the direction varies across biomes. In tropical and temperate forests, fragmentation is linked to increased local temperature and atmospheric dryness, resulting in a negative fragmentation–resilience relationship. Conversely, in boreal forests, fragmentation is associated with decreased atmospheric dryness and enhanced light resource, thereby increasing forest resilience. Our results reconcile competing hypotheses and highlight the importance of accounting for fragmentation when predicting shifts in ecosystem resilience under disturbances. These findings also suggest the necessity of biome-targeted forest management strategies for climate change mitigation and adaptation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
Data availability
The global tree cover, land cover, NDVI, EVI, GOSIF, LAI, LST, VPD, SM and APAR data used for the analyses in this study are available online as follows: GFW tree cover images https://glad.earthengine.app/view/global-forest-change; GFCC tree cover images https://lpdaac.usgs.gov/products/gfcc30tcv003/; MODIS MOD13C2 NDVI, EVI datasets https://lpdaac.usgs.gov/products/mod13c2v061/; MODIS MCD12C1 land cover images https://lpdaac.usgs.gov/products/mcd12c1v061/; MODIS MOD11C3 LST datasets https://lpdaac.usgs.gov/products/mod11c3v061/; MODIS MCD15A3H LAI datasets https://lpdaac.usgs.gov/products/mcd15a3hv061/; TerraClimate VPD and SM datasets https://www.climatologylab.org/terraclimate.html; GLASS PAR and FPAR datasets http://www.glass.umd.edu/Download.html; GOSIF dataset https://www.mdpi.com/2072-4292/11/5/517/s1; ESA WorldCover 2021 10-m land cover datasets https://doi.org/10.5281/zenodo.7254221 (ref. 133); MODIS MCD43A3 black-sky albedo and white-sky albedo datasets for bands 1 to 7, as well as for the visible, near-infrared and shortwave bands https://lpdaac.usgs.gov/products/mcd43a3v061/; global aridity index and potential evapotranspiration database https://doi.org/10.6084/m9.figshare.7504448.v5 (ref. 134); the key code for mapping the inundation extent and duration of global flood events https://doi.org/10.5281/zenodo.11181120 (ref. 135); the digital Köppen–Geiger world map http://koeppen-geiger.vu-wien.ac.at/present.htm; drivers of global forest loss https://www.science.org/doi/abs/10.1126/science.aau3445; global datasets of forest aboveground biomass https://catalogue.ceda.ac.uk/uuid/af60720c1e404a9e9d2c145d2b2ead4e; global long-term microwave vegetation optical depth climate archive (VODCA) https://zenodo.org/records/2575599 (ref. 136); and the FLUXNET2025 dataset https://fluxnet.org/data/fluxnet2015-dataset/.
Code availability
The code used for this study is available via Zenodo at https://zenodo.org/records/15488956 (ref. 137).
References
Randerson, J. T. et al. The impact of boreal forest fire on climate warming. Science 314, 1130–1132 (2006).
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).
Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).
Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).
Forzieri, G. et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 12, 257–276 (2020).
Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).
Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Kunert, N., Teophilo Aparecido, L. M., Higuchi, N., dos Santos, J. & Trumbore, S. Higher tree transpiration due to road-associated edge effects in a tropical moist lowland forest. Agric. For. Meteorol. 213, 183–192 (2015).
Grogan, K., Pflugmacher, D., Hostert, P., Mertz, O. & Fensholt, R. Unravelling the link between global rubber price and tropical deforestation in Cambodia. Nat. Plants 5, 47–53 (2019).
Verbesselt, J. et al. Remotely sensed resilience of tropical forests. Nat. Clim. Change 6, 1028–1031 (2016).
Forzieri, G., Dakos, V., McDowell, N., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022).
Smith, T. & Boers, N. Global vegetation resilience linked to water availability and variability. Nat. Commun. 14, 498 (2023).
Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).
Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).
De Keersmaecker, W. et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 24, 539–548 (2015).
Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).
Smith, T. & Boers, N. Reliability of vegetation resilience estimates depends on biomass density. Nat. Ecol. Evol. 7, 1799–1808 (2023).
Mcdowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
Carnicer, J. et al. Forest resilience to global warming is strongly modulated by local-scale topographic, microclimatic and biotic conditions. J. Ecol. 109, 3322–3339 (2021).
Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).
Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).
Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605 (2010).
Franklin, A., Noon, B. & George, T. What is habitat fragmentation? Stud. Avian Biol. 25, 20–29 (2002).
Pimm, S. L. The forest fragment classic. Nature 393, 23–24 (1998).
Bourgoin, C. et al. Human degradation of tropical moist forests is greater than previously estimated. Nature 631, 570–576 (2024).
Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).
Fischer, R. et al. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Sci. Adv. 7, eabg7012 (2021).
Nunes, M. H. et al. Recovery of logged forest fragments in a human-modified tropical landscape during the 2015–16 El Niño. Nat. Commun. 12, 1526 (2021).
Brando, P. M. et al. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc. Natl Acad. Sci. USA 107, 14685–14690 (2010).
Ewers, R. M. & Banks-Leite, C. Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS ONE 8, e58093 (2013).
Laurance, W. F. Forest–climate interactions in fragmented tropical landscapes. Philos. Trans. R. Soc. Lond. B 359, 345–352 (2004).
Pinto, S. R. R. et al. Landscape attributes drive complex spatial microclimate configuration of Brazilian Atlantic forest fragments. Trop. Conserv. Sci. 3, 389–402 (2010).
Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).
D’Amato, A. W., Bradford, J. B., Fraver, S. & Palik, B. J. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecol. Appl. 23, 1735–1742 (2013).
Nunes, A., Oliveira, G., Cabral, M. S., Branquinho, C. & Correia, O. Beneficial effect of pine thinning in mixed plantations through changes in the understory functional composition. Ecol. Eng. 70, 387–396 (2014).
Vasconcelos, H. L., Vilhena, J. M. S., Magnusson, W. E. & Albernaz, A. L. K. M. Long-term effects of forest fragmentation on Amazonian ant communities. J. Biogeogr. 33, 1348–1356 (2006).
Laurance, W. F. et al. Rapid decay of tree-community composition in Amazonian forest fragments. Proc. Natl Acad. Sci. USA 103, 19010–19014 (2006).
Friedl, M. & Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MCD12C1.061 (2022).
Potapov, P. et al. The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote Sens. 3, 856903 (2022).
Haines-Young, R. & Chopping, M. Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Prog. Phys. Geogr. Earth Environ. 20, 418–445 (1996).
Li, H. & Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399 (2004).
Uuemaa, E., Antrop, M., Roosaare, J., Marja, R. & Mander, Ü. Landscape metrics and indices: an overview of their use in landscape research. Living Rev. Landsc. Res. 3, 1 (2009).
Townshend, J. Global Forest Cover Change (GFCC) Tree Cover Multi-year Global 30 m V003. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MEaSUREs/GFCC/GFCC30TC.003 (2016).
Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).
Didan, K. MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD13C2.061 (2021).
Myneni, R., Knyazikhin, Y. & Park, T. MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500m SIN Grid V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MCD15A3H.061 (2021).
Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).
Kattenborn, T. et al. Temporal dynamics in vertical leaf angles can confound vegetation indices widely used in Earth observations. Commun. Earth Environ. 5, 550 (2024).
Vincini, M. & Frazzi, E. Comparing narrow and broad-band vegetation indices to estimate leaf chlorophyll content in planophile crop canopies. Precis. Agric. 12, 334–344 (2011).
Apan, A., Held, A., Phinn, S. & Markley, J. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery. Int. J. Remote Sens. 25, 489–498 (2004).
Gu, Y., Brown, J. F., Verdin, J. P. & Wardlow, B. A five‐year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett. 34, 2006GL029127 (2007).
Gillespie, A. R., Kahle, A. B. & Walker, R. E. Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques. Remote Sens. Environ. 22, 343–365 (1987).
Han, J., Zhang, Z. & Cao, J. Developing a new method to identify flowering dynamics of rapeseed using Landsat 8 and Sentinel-1/2. Remote Sens. 13, 105 (2020).
Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).
Smith, T., Traxl, D. & Boers, N. Empirical evidence for recent global shifts in vegetation resilience. Nat. Clim. Change 12, 477–484 (2022).
Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).
Su, Y. et al. Quantifying the biophysical effects of forests on local air temperature using a novel three-layered land surface energy balance model. Environ. Int. 132, 105080 (2019).
Özkan, U. & Gökbulak, F. Effect of vegetation change from forest to herbaceous vegetation cover on soil moisture and temperature regimes and soil water chemistry. CATENA 149, 158–166 (2017).
Shao, X. et al. Drought-induced ecosystem resistance and recovery observed at 118 flux tower stations across the globe. Agric. For. Meteorol. 356, 110170 (2024).
Dannenberg, M. P. et al. Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 U.S. Southwest hot drought. Glob. Change Biol. 28, 4797–4806 (2022).
Boisvenue, C. & Running, S. W. Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob. Change Biol. 12, 862–882 (2006).
Kauppi, P. E., Posch, M. & Pirinen, P. Large impacts of climatic warming on growth of boreal forests since 1960. PLoS ONE 9, e111340 (2014).
Schaphoff, S., Reyer, C. P. O., Schepaschenko, D., Gerten, D. & Shvidenko, A. Tamm review: observed and projected climate change impacts on Russia’s forests and its carbon balance. For. Ecol. Manag. 361, 432–444 (2016).
Zhong, Z. et al. Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. Sci. Adv. 9, eadf3166 (2023).
Jonard, F., Feldman, A. F., Short Gianotti, D. J. & Entekhabi, D. Observed water and light limitation across global ecosystems. Biogeosciences 19, 5575–5590 (2022).
Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).
Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).
Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).
Ma, J., Li, J., Wu, W. & Liu, J. Global forest fragmentation change from 2000 to 2020. Nat. Commun. 14, 3752 (2023).
Liu, J. et al. Forest fragmentation in China and its effect on biodiversity. Biol. Rev. 94, 1636–1657 (2019).
Harvey, M. G. et al. The evolution of a tropical biodiversity hotspot. Science 370, 1343–1348 (2020).
Mi, C., Ma, L., Yang, M., Li, X. & Meiri, S. Global protected areas as refuges for amphibians and reptiles under climate change. Nat. Comm. 14, 1389 (2023).
Meunier, F. et al. Unraveling the relative role of light and water competition between lianas and trees in tropical forests: a vegetation model analysis. J. Ecol. 109, 519–540 (2021).
Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).
Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).
De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).
Zhang, H., Chase, J. M. & Liao, J. Habitat amount modulates biodiversity responses to fragmentation. Nat. Ecol. Evol. 8, 1437–1447 (2024).
Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).
Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science 278, 1117–1118 (1997).
Bonan, G. B. & Shugart, H. H. Environmental factors and ecological processes in boreal forests. Annu. Rev. Ecol. Syst. 20, 1–28 (1989).
Hokanson, K. J., Peterson, E. S., Devito, K. J. & Mendoza, C. A. Forestland–peatland hydrologic connectivity in water-limited environments: hydraulic gradients often oppose topography. Environ. Res. Lett. 15, 034021 (2020).
Van Der Velde, Y. et al. Emerging forest–peatland bistability and resilience of European peatland carbon stores. Proc. Natl Acad. Sci. USA 118, e2101742118 (2021).
D’Orangeville, L. et al. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 9, 3213 (2018).
Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health and global change. Science 349, 819–822 (2015).
Nunes, M. H. et al. Forest fragmentation impacts the seasonality of Amazonian evergreen canopies. Nat. Commun. 13, 917 (2022).
Beaudet, M. et al. Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest: a modelling approach. For. Ecol. Manag. 261, 84–94 (2011).
Lange, O. L., Lösch, R., Schulze, E. D. & Kappen, L. Responses of stomata to changes in humidity. Planta 100, 76–86 (1971).
Qiu, L., He, J., Yue, C., Ciais, P. & Zheng, C. Substantial terrestrial carbon emissions from global expansion of impervious surface area. Nat. Commun. 15, 6456 (2024).
Su, Y. et al. Asymmetric influence of forest cover gain and loss on land surface temperature. Nat. Clim. Change 13, 823–831 (2023).
Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 14, 23–29 (2021).
Saxe, H., Cannell, M. G. R., Johnsen, Ø., Ryan, M. G. & Vourlitis, G. Tree and forest functioning in response to global warming. New Phytol. 149, 369–399 (2001).
Barber, V. A., Juday, G. P. & Finney, B. P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405, 668–673 (2000).
Michel, P., Burritt, D. J. & Lee, W. G. Bryophytes display allelopathic interactions with tree species in native forest ecosystems. Oikos 120, 1272–1280 (2011).
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).
Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci. Data 9, 409 (2022).
Han, J. et al. Threat of low-frequency high-intensity floods to global cropland and crop yields. Nat. Sustain. 7, 994–1006 (2024).
Moser, D. et al. Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landsc. Ecol. 17, 657–669 (2002).
Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. & Rietkerk, M. Early warning signals also precede non-catastrophic transitions. Oikos 122, 641–648 (2012).
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
Ives, A. R. Measuring resilience in stochastic systems. Ecol. Monogr. 65, 217–233 (1995).
Feng, Y. et al. Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale. Commun. Earth Environ. 2, 88 (2021).
Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).
Schaaf, C. & Wang, Z. MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global—500m V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MCD43A3.061 (2021).
Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).
Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
Vallat, R. Pingouin: statistics in Python. J. Open Source Softw. 3, 1026 (2018).
Hair, J. F., Risher, J. J., Sarstedt, M. & Ringle, C. M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 31, 2–24 (2019).
Baba, K., Shibata, R. & Sibuya, M. Partial correlation and conditional correlation as measures of conditional independence. Aust. NZ J. Stat. 46, 657–664 (2004).
Peng, J., Wang, P., Zhou, N. & Zhu, J. Partial correlation estimation by joint sparse regression models. J. Am. Stat. Assoc. 104, 735–746 (2009).
Møller, S. F., Von Frese, J. & Bro, R. Robust methods for multivariate data analysis. J. Chemom. 19, 549–563 (2005).
Mateos-Aparicio, G. Partial least squares (PLS) methods: origins, evolution, and application to social sciences. Commun. Stat. Theory Methods 40, 2305–2317 (2011).
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M. & Thiele, K. O. Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. J. Acad. Mark. Sci. 45, 616–632 (2017).
Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O. & Gudergan, S. P. Estimation issues with PLS and CBSEM: where the bias lies! J. Bus. Res. 69, 3998–4010 (2016).
Rigdon, E. E., Becker, J.-M. & Sarstedt, M. Factor indeterminacy as metrological uncertainty: implications for advancing psychological measurement. Multivar. Behav. Res. 54, 429–443 (2019).
Cepeda Carrión, G., Henseler, J., Ringle, C. M. & Roldán, J. L. Prediction-oriented modeling in business research by means of PLS path modeling: Introduction to a JBR special section. J. Bus. Res. 69, 4545–4551 (2016).
Evermann, J. & Tate, M. Assessing the predictive performance of structural equation model estimators. J. Bus. Res. 69, 4565–4582 (2016).
Ravand, H. & Baghaei, P. Partial least squares structural equation modeling with R. Pract. Assess. Res. Eval. 21, 11 (2016).
Alasadi, S. A. & Bhaya, W. S. Review of data preprocessing techniques in data mining. J. Eng. Appl. Sci. 12, 4102–4107 (2017).
Wan, Z., Hook, S. & Hulley, G. MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05 Deg CMG V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD11C3.061 (2021).
Xiao, Z., Liang, S., Sun, R., Wang, J. & Jiang, B. Estimating the fraction of absorbed photosynthetically active radiation from the MODIS data based GLASS leaf area index product. Remote Sens. Environ. 171, 105–117 (2015).
Zhang, X., Liang, S., Zhou, G., Wu, H. & Zhao, X. Generating global land surface satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ. 152, 318–332 (2014).
Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).
Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).
Wang, J., Pan, F., Soininen, J., Heino, J. & Shen, J. Nutrient enrichment modifies temperature–biodiversity relationships in large-scale field experiments. Nat. Commun. 7, 13960 (2016).
Harvey, P. H., Colwell, R. K., Silvertown, J. W. & May, R. M. Null models in ecology. Annu. Rev. Ecol. Syst. 14, 189–211 (1983).
Cotto, O. & Day, T. A null model for the distribution of fitness effects of mutations. Proc. Natl Acad. Sci. USA 120, e2218200120 (2023).
Fan, Y. et al. Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecol. Process. 5, 19 (2016).
García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).
Dronova, I. & Taddeo, S. Remote sensing of phenology: towards the comprehensive indicators of plant community dynamics from species to regional scales. J. Ecol. 110, 1460–1484 (2022).
Danks, N. P., Sharma, P. N. & Sarstedt, M. Model selection uncertainty and multimodel inference in partial least squares structural equation modeling (PLS-SEM). J. Bus. Res. 113, 13–24 (2020).
Shmueli, G. et al. Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. Eur. J. Mark. 53, 2322–2347 (2019).
Zanaga, D. et al. (2022). ESA WorldCover 10 m 2021 v200 (version v200) [Data set]. Zenodo https://doi.org/10.5281/zenodo.7254221 (2022).
Trabucco, A. & Zomer, R. Global aridity index and potential evapotranspiration (ET0) database: version 3. figshare https://doi.org/10.6084/m9.figshare.7504448.v5 (2019).
Han, J. & Zhang, Z. The code for mapping the inundation extent and duration of flood events. Zenodo https://doi.org/10.5281/zenodo.11181120 (2024).
Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive VODCA (1.0) [Data set]. Zenodo https://doi.org/10.5281/zenodo.2575599 (2019).
Zhang, C. Code to support ‘Pervasive but biome-dependent relationship between fragmentation and resilience in global forests’. Zenodo https://zenodo.org/records/15488956 (2025).
Trabucco, A. & Zomer, R. Global aridity index and potential evapotranspiration (ET0) climate database v2. 1705236666 bytes. figshare https://doi.org/10.6084/M9.figshare.7504448.V3 (2019).
Acknowledgements
This study was supported by the National Natural Science Foundation of China (grant nos. 42225104, 42471326 and 42125105), the National Key R&D Programme of China (no. 2024YFF1306600) and the Science and Technology Program of Guangdong (no. 2024B1212070012). C.W. was funded by the National Natural Science Foundation of China (42125101). J.C. was funded by the research grants ECO-FUN (PID2023-151488OB-I00) and MICROCLIM (PID2020-117636GB-C21).
Author information
Authors and Affiliations
Contributions
Y.S. and C.Z. designed the study and wrote the initial paper. C.W. and W.Z. designed the study and revised the paper. C.Z. collected the data and performed the analysis. All authors contributed to discuss the scientific question and revise the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks Celso Silva-Junior and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–39 and Tables 1 and 2.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Su, Y., Zhang, C., Cescatti, A. et al. Pervasive but biome-dependent relationship between fragmentation and resilience in forests. Nat Ecol Evol 9, 1670–1684 (2025). https://doi.org/10.1038/s41559-025-02776-7
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41559-025-02776-7