Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pervasive but biome-dependent relationship between fragmentation and resilience in forests

Abstract

The relationship between landscape fragmentation and vegetation resilience is uncertain. Here we use multiple satellite-based tree cover data and vegetation indices to quantify the apparent effects of fragmentation on global forest resilience and potential mechanisms thereof. We measure fragmentation as edge density, patch density and mean patch area of tree cover patches, and measure resilience as one-lag temporal autocorrelation of vegetation indices. We find a statistically significant (P < 0.05) fragmentation–resilience relationship in about 77% of fragmented forests, but the direction varies across biomes. In tropical and temperate forests, fragmentation is linked to increased local temperature and atmospheric dryness, resulting in a negative fragmentation–resilience relationship. Conversely, in boreal forests, fragmentation is associated with decreased atmospheric dryness and enhanced light resource, thereby increasing forest resilience. Our results reconcile competing hypotheses and highlight the importance of accounting for fragmentation when predicting shifts in ecosystem resilience under disturbances. These findings also suggest the necessity of biome-targeted forest management strategies for climate change mitigation and adaptation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pervasive but divergent fragmentation–resilience relationships across global forests estimated using the PCA method.
Fig. 2: Comparisons of fragmentation versus tree cover impacts on forest resilience using the PLS-SEM method.
Fig. 3: Sensitivity (βTAC) of TACkNDVI to ED for each TC bin estimated using the statistical data binning approach.
Fig. 4: Influences of fragmentation on the biophysical effects of forest on local climate.
Fig. 5: Influencing pathways of fragmentation on forest resilience.
Fig. 6: Fragmentation–resilience relationships in different conditions.

Similar content being viewed by others

Data availability

The global tree cover, land cover, NDVI, EVI, GOSIF, LAI, LST, VPD, SM and APAR data used for the analyses in this study are available online as follows: GFW tree cover images https://glad.earthengine.app/view/global-forest-change; GFCC tree cover images https://lpdaac.usgs.gov/products/gfcc30tcv003/; MODIS MOD13C2 NDVI, EVI datasets https://lpdaac.usgs.gov/products/mod13c2v061/; MODIS MCD12C1 land cover images https://lpdaac.usgs.gov/products/mcd12c1v061/; MODIS MOD11C3 LST datasets https://lpdaac.usgs.gov/products/mod11c3v061/; MODIS MCD15A3H LAI datasets https://lpdaac.usgs.gov/products/mcd15a3hv061/; TerraClimate VPD and SM datasets https://www.climatologylab.org/terraclimate.html; GLASS PAR and FPAR datasets http://www.glass.umd.edu/Download.html; GOSIF dataset https://www.mdpi.com/2072-4292/11/5/517/s1; ESA WorldCover 2021 10-m land cover datasets https://doi.org/10.5281/zenodo.7254221 (ref. 133); MODIS MCD43A3 black-sky albedo and white-sky albedo datasets for bands 1 to 7, as well as for the visible, near-infrared and shortwave bands https://lpdaac.usgs.gov/products/mcd43a3v061/; global aridity index and potential evapotranspiration database https://doi.org/10.6084/m9.figshare.7504448.v5 (ref. 134); the key code for mapping the inundation extent and duration of global flood events https://doi.org/10.5281/zenodo.11181120 (ref. 135); the digital Köppen–Geiger world map http://koeppen-geiger.vu-wien.ac.at/present.htm; drivers of global forest loss https://www.science.org/doi/abs/10.1126/science.aau3445; global datasets of forest aboveground biomass https://catalogue.ceda.ac.uk/uuid/af60720c1e404a9e9d2c145d2b2ead4e; global long-term microwave vegetation optical depth climate archive (VODCA) https://zenodo.org/records/2575599 (ref. 136); and the FLUXNET2025 dataset https://fluxnet.org/data/fluxnet2015-dataset/.

Code availability

The code used for this study is available via Zenodo at https://zenodo.org/records/15488956 (ref. 137).

References

  1. Randerson, J. T. et al. The impact of boreal forest fire on climate warming. Science 314, 1130–1132 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).

    Article  Google Scholar 

  3. Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    Article  Google Scholar 

  5. Forzieri, G. et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 12, 257–276 (2020).

    Article  Google Scholar 

  6. Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).

    Article  Google Scholar 

  8. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Kunert, N., Teophilo Aparecido, L. M., Higuchi, N., dos Santos, J. & Trumbore, S. Higher tree transpiration due to road-associated edge effects in a tropical moist lowland forest. Agric. For. Meteorol. 213, 183–192 (2015).

    Article  Google Scholar 

  10. Grogan, K., Pflugmacher, D., Hostert, P., Mertz, O. & Fensholt, R. Unravelling the link between global rubber price and tropical deforestation in Cambodia. Nat. Plants 5, 47–53 (2019).

    Article  PubMed  Google Scholar 

  11. Verbesselt, J. et al. Remotely sensed resilience of tropical forests. Nat. Clim. Change 6, 1028–1031 (2016).

    Article  Google Scholar 

  12. Forzieri, G., Dakos, V., McDowell, N., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith, T. & Boers, N. Global vegetation resilience linked to water availability and variability. Nat. Commun. 14, 498 (2023).

  14. Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).

    Article  Google Scholar 

  16. De Keersmaecker, W. et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 24, 539–548 (2015).

    Article  Google Scholar 

  17. Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).

    Article  PubMed  Google Scholar 

  18. Smith, T. & Boers, N. Reliability of vegetation resilience estimates depends on biomass density. Nat. Ecol. Evol. 7, 1799–1808 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mcdowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Carnicer, J. et al. Forest resilience to global warming is strongly modulated by local-scale topographic, microclimatic and biotic conditions. J. Ecol. 109, 3322–3339 (2021).

    Article  Google Scholar 

  21. Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Franklin, A., Noon, B. & George, T. What is habitat fragmentation? Stud. Avian Biol. 25, 20–29 (2002).

    Google Scholar 

  25. Pimm, S. L. The forest fragment classic. Nature 393, 23–24 (1998).

    Article  CAS  Google Scholar 

  26. Bourgoin, C. et al. Human degradation of tropical moist forests is greater than previously estimated. Nature 631, 570–576 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).

    Article  Google Scholar 

  28. Fischer, R. et al. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Sci. Adv. 7, eabg7012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nunes, M. H. et al. Recovery of logged forest fragments in a human-modified tropical landscape during the 2015–16 El Niño. Nat. Commun. 12, 1526 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brando, P. M. et al. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc. Natl Acad. Sci. USA 107, 14685–14690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ewers, R. M. & Banks-Leite, C. Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS ONE 8, e58093 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laurance, W. F. Forest–climate interactions in fragmented tropical landscapes. Philos. Trans. R. Soc. Lond. B 359, 345–352 (2004).

    Article  Google Scholar 

  33. Pinto, S. R. R. et al. Landscape attributes drive complex spatial microclimate configuration of Brazilian Atlantic forest fragments. Trop. Conserv. Sci. 3, 389–402 (2010).

    Article  Google Scholar 

  34. Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).

    Article  Google Scholar 

  35. D’Amato, A. W., Bradford, J. B., Fraver, S. & Palik, B. J. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecol. Appl. 23, 1735–1742 (2013).

    Article  PubMed  Google Scholar 

  36. Nunes, A., Oliveira, G., Cabral, M. S., Branquinho, C. & Correia, O. Beneficial effect of pine thinning in mixed plantations through changes in the understory functional composition. Ecol. Eng. 70, 387–396 (2014).

    Article  Google Scholar 

  37. Vasconcelos, H. L., Vilhena, J. M. S., Magnusson, W. E. & Albernaz, A. L. K. M. Long-term effects of forest fragmentation on Amazonian ant communities. J. Biogeogr. 33, 1348–1356 (2006).

    Article  Google Scholar 

  38. Laurance, W. F. et al. Rapid decay of tree-community composition in Amazonian forest fragments. Proc. Natl Acad. Sci. USA 103, 19010–19014 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Friedl, M. & Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MCD12C1.061 (2022).

  40. Potapov, P. et al. The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote Sens. 3, 856903 (2022).

    Article  Google Scholar 

  41. Haines-Young, R. & Chopping, M. Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Prog. Phys. Geogr. Earth Environ. 20, 418–445 (1996).

    Article  Google Scholar 

  42. Li, H. & Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399 (2004).

    Article  Google Scholar 

  43. Uuemaa, E., Antrop, M., Roosaare, J., Marja, R. & Mander, Ü. Landscape metrics and indices: an overview of their use in landscape research. Living Rev. Landsc. Res. 3, 1 (2009).

  44. Townshend, J. Global Forest Cover Change (GFCC) Tree Cover Multi-year Global 30 m V003. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MEaSUREs/GFCC/GFCC30TC.003 (2016).

  45. Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Didan, K. MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD13C2.061 (2021).

  47. Myneni, R., Knyazikhin, Y. & Park, T. MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500m SIN Grid V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MCD15A3H.061 (2021).

  48. Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).

    Article  Google Scholar 

  49. Kattenborn, T. et al. Temporal dynamics in vertical leaf angles can confound vegetation indices widely used in Earth observations. Commun. Earth Environ. 5, 550 (2024).

    Article  Google Scholar 

  50. Vincini, M. & Frazzi, E. Comparing narrow and broad-band vegetation indices to estimate leaf chlorophyll content in planophile crop canopies. Precis. Agric. 12, 334–344 (2011).

    Article  Google Scholar 

  51. Apan, A., Held, A., Phinn, S. & Markley, J. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery. Int. J. Remote Sens. 25, 489–498 (2004).

    Article  Google Scholar 

  52. Gu, Y., Brown, J. F., Verdin, J. P. & Wardlow, B. A five‐year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett. 34, 2006GL029127 (2007).

    Article  Google Scholar 

  53. Gillespie, A. R., Kahle, A. B. & Walker, R. E. Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques. Remote Sens. Environ. 22, 343–365 (1987).

    Article  Google Scholar 

  54. Han, J., Zhang, Z. & Cao, J. Developing a new method to identify flowering dynamics of rapeseed using Landsat 8 and Sentinel-1/2. Remote Sens. 13, 105 (2020).

    Article  Google Scholar 

  55. Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Smith, T., Traxl, D. & Boers, N. Empirical evidence for recent global shifts in vegetation resilience. Nat. Clim. Change 12, 477–484 (2022).

    Article  Google Scholar 

  57. Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).

  58. Su, Y. et al. Quantifying the biophysical effects of forests on local air temperature using a novel three-layered land surface energy balance model. Environ. Int. 132, 105080 (2019).

    Article  PubMed  Google Scholar 

  59. Özkan, U. & Gökbulak, F. Effect of vegetation change from forest to herbaceous vegetation cover on soil moisture and temperature regimes and soil water chemistry. CATENA 149, 158–166 (2017).

    Article  Google Scholar 

  60. Shao, X. et al. Drought-induced ecosystem resistance and recovery observed at 118 flux tower stations across the globe. Agric. For. Meteorol. 356, 110170 (2024).

    Article  Google Scholar 

  61. Dannenberg, M. P. et al. Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 U.S. Southwest hot drought. Glob. Change Biol. 28, 4797–4806 (2022).

    Article  Google Scholar 

  62. Boisvenue, C. & Running, S. W. Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob. Change Biol. 12, 862–882 (2006).

    Article  Google Scholar 

  63. Kauppi, P. E., Posch, M. & Pirinen, P. Large impacts of climatic warming on growth of boreal forests since 1960. PLoS ONE 9, e111340 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schaphoff, S., Reyer, C. P. O., Schepaschenko, D., Gerten, D. & Shvidenko, A. Tamm review: observed and projected climate change impacts on Russia’s forests and its carbon balance. For. Ecol. Manag. 361, 432–444 (2016).

    Article  Google Scholar 

  65. Zhong, Z. et al. Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. Sci. Adv. 9, eadf3166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jonard, F., Feldman, A. F., Short Gianotti, D. J. & Entekhabi, D. Observed water and light limitation across global ecosystems. Biogeosciences 19, 5575–5590 (2022).

    Article  CAS  Google Scholar 

  67. Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).

    Article  Google Scholar 

  68. Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Ma, J., Li, J., Wu, W. & Liu, J. Global forest fragmentation change from 2000 to 2020. Nat. Commun. 14, 3752 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, J. et al. Forest fragmentation in China and its effect on biodiversity. Biol. Rev. 94, 1636–1657 (2019).

    Article  PubMed  Google Scholar 

  72. Harvey, M. G. et al. The evolution of a tropical biodiversity hotspot. Science 370, 1343–1348 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Mi, C., Ma, L., Yang, M., Li, X. & Meiri, S. Global protected areas as refuges for amphibians and reptiles under climate change. Nat. Comm. 14, 1389 (2023).

    Article  CAS  Google Scholar 

  74. Meunier, F. et al. Unraveling the relative role of light and water competition between lianas and trees in tropical forests: a vegetation model analysis. J. Ecol. 109, 519–540 (2021).

    Article  PubMed  Google Scholar 

  75. Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).

    Article  Google Scholar 

  76. Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang, H., Chase, J. M. & Liao, J. Habitat amount modulates biodiversity responses to fragmentation. Nat. Ecol. Evol. 8, 1437–1447 (2024).

    Article  PubMed  Google Scholar 

  79. Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    Article  CAS  Google Scholar 

  80. Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science 278, 1117–1118 (1997).

    Article  CAS  Google Scholar 

  81. Bonan, G. B. & Shugart, H. H. Environmental factors and ecological processes in boreal forests. Annu. Rev. Ecol. Syst. 20, 1–28 (1989).

    Article  Google Scholar 

  82. Hokanson, K. J., Peterson, E. S., Devito, K. J. & Mendoza, C. A. Forestland–peatland hydrologic connectivity in water-limited environments: hydraulic gradients often oppose topography. Environ. Res. Lett. 15, 034021 (2020).

    Article  Google Scholar 

  83. Van Der Velde, Y. et al. Emerging forest–peatland bistability and resilience of European peatland carbon stores. Proc. Natl Acad. Sci. USA 118, e2101742118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. D’Orangeville, L. et al. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 9, 3213 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health and global change. Science 349, 819–822 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Nunes, M. H. et al. Forest fragmentation impacts the seasonality of Amazonian evergreen canopies. Nat. Commun. 13, 917 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Beaudet, M. et al. Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest: a modelling approach. For. Ecol. Manag. 261, 84–94 (2011).

    Article  Google Scholar 

  88. Lange, O. L., Lösch, R., Schulze, E. D. & Kappen, L. Responses of stomata to changes in humidity. Planta 100, 76–86 (1971).

    Article  CAS  PubMed  Google Scholar 

  89. Qiu, L., He, J., Yue, C., Ciais, P. & Zheng, C. Substantial terrestrial carbon emissions from global expansion of impervious surface area. Nat. Commun. 15, 6456 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Su, Y. et al. Asymmetric influence of forest cover gain and loss on land surface temperature. Nat. Clim. Change 13, 823–831 (2023).

    Article  Google Scholar 

  91. Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 14, 23–29 (2021).

    Article  CAS  Google Scholar 

  92. Saxe, H., Cannell, M. G. R., Johnsen, Ø., Ryan, M. G. & Vourlitis, G. Tree and forest functioning in response to global warming. New Phytol. 149, 369–399 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Barber, V. A., Juday, G. P. & Finney, B. P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405, 668–673 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Michel, P., Burritt, D. J. & Lee, W. G. Bryophytes display allelopathic interactions with tree species in native forest ecosystems. Oikos 120, 1272–1280 (2011).

    Article  Google Scholar 

  95. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    Article  Google Scholar 

  96. Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci. Data 9, 409 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Han, J. et al. Threat of low-frequency high-intensity floods to global cropland and crop yields. Nat. Sustain. 7, 994–1006 (2024).

    Article  Google Scholar 

  98. Moser, D. et al. Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landsc. Ecol. 17, 657–669 (2002).

    Article  Google Scholar 

  99. Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. & Rietkerk, M. Early warning signals also precede non-catastrophic transitions. Oikos 122, 641–648 (2012).

    Article  Google Scholar 

  100. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Ives, A. R. Measuring resilience in stochastic systems. Ecol. Monogr. 65, 217–233 (1995).

    Article  Google Scholar 

  102. Feng, Y. et al. Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale. Commun. Earth Environ. 2, 88 (2021).

    Article  Google Scholar 

  103. Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).

    Google Scholar 

  104. Schaaf, C. & Wang, Z. MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global—500m V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MCD43A3.061 (2021).

  105. Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Article  Google Scholar 

  107. Vallat, R. Pingouin: statistics in Python. J. Open Source Softw. 3, 1026 (2018).

    Article  Google Scholar 

  108. Hair, J. F., Risher, J. J., Sarstedt, M. & Ringle, C. M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 31, 2–24 (2019).

    Article  Google Scholar 

  109. Baba, K., Shibata, R. & Sibuya, M. Partial correlation and conditional correlation as measures of conditional independence. Aust. NZ J. Stat. 46, 657–664 (2004).

    Article  Google Scholar 

  110. Peng, J., Wang, P., Zhou, N. & Zhu, J. Partial correlation estimation by joint sparse regression models. J. Am. Stat. Assoc. 104, 735–746 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Møller, S. F., Von Frese, J. & Bro, R. Robust methods for multivariate data analysis. J. Chemom. 19, 549–563 (2005).

    Article  Google Scholar 

  112. Mateos-Aparicio, G. Partial least squares (PLS) methods: origins, evolution, and application to social sciences. Commun. Stat. Theory Methods 40, 2305–2317 (2011).

    Article  Google Scholar 

  113. Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M. & Thiele, K. O. Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. J. Acad. Mark. Sci. 45, 616–632 (2017).

    Article  Google Scholar 

  114. Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O. & Gudergan, S. P. Estimation issues with PLS and CBSEM: where the bias lies! J. Bus. Res. 69, 3998–4010 (2016).

    Article  Google Scholar 

  115. Rigdon, E. E., Becker, J.-M. & Sarstedt, M. Factor indeterminacy as metrological uncertainty: implications for advancing psychological measurement. Multivar. Behav. Res. 54, 429–443 (2019).

    Article  Google Scholar 

  116. Cepeda Carrión, G., Henseler, J., Ringle, C. M. & Roldán, J. L. Prediction-oriented modeling in business research by means of PLS path modeling: Introduction to a JBR special section. J. Bus. Res. 69, 4545–4551 (2016).

    Article  Google Scholar 

  117. Evermann, J. & Tate, M. Assessing the predictive performance of structural equation model estimators. J. Bus. Res. 69, 4565–4582 (2016).

    Article  Google Scholar 

  118. Ravand, H. & Baghaei, P. Partial least squares structural equation modeling with R. Pract. Assess. Res. Eval. 21, 11 (2016).

  119. Alasadi, S. A. & Bhaya, W. S. Review of data preprocessing techniques in data mining. J. Eng. Appl. Sci. 12, 4102–4107 (2017).

    Google Scholar 

  120. Wan, Z., Hook, S. & Hulley, G. MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05 Deg CMG V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD11C3.061 (2021).

  121. Xiao, Z., Liang, S., Sun, R., Wang, J. & Jiang, B. Estimating the fraction of absorbed photosynthetically active radiation from the MODIS data based GLASS leaf area index product. Remote Sens. Environ. 171, 105–117 (2015).

    Article  Google Scholar 

  122. Zhang, X., Liang, S., Zhou, G., Wu, H. & Zhao, X. Generating global land surface satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ. 152, 318–332 (2014).

    Article  Google Scholar 

  123. Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Wang, J., Pan, F., Soininen, J., Heino, J. & Shen, J. Nutrient enrichment modifies temperature–biodiversity relationships in large-scale field experiments. Nat. Commun. 7, 13960 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Harvey, P. H., Colwell, R. K., Silvertown, J. W. & May, R. M. Null models in ecology. Annu. Rev. Ecol. Syst. 14, 189–211 (1983).

    Article  Google Scholar 

  127. Cotto, O. & Day, T. A null model for the distribution of fitness effects of mutations. Proc. Natl Acad. Sci. USA 120, e2218200120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fan, Y. et al. Applications of structural equation modeling (SEM) in ecological studies: an updated review. Ecol. Process. 5, 19 (2016).

    Article  Google Scholar 

  129. García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Dronova, I. & Taddeo, S. Remote sensing of phenology: towards the comprehensive indicators of plant community dynamics from species to regional scales. J. Ecol. 110, 1460–1484 (2022).

    Article  Google Scholar 

  131. Danks, N. P., Sharma, P. N. & Sarstedt, M. Model selection uncertainty and multimodel inference in partial least squares structural equation modeling (PLS-SEM). J. Bus. Res. 113, 13–24 (2020).

    Article  Google Scholar 

  132. Shmueli, G. et al. Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. Eur. J. Mark. 53, 2322–2347 (2019).

    Article  Google Scholar 

  133. Zanaga, D. et al. (2022). ESA WorldCover 10 m 2021 v200 (version v200) [Data set]. Zenodo https://doi.org/10.5281/zenodo.7254221 (2022).

  134. Trabucco, A. & Zomer, R. Global aridity index and potential evapotranspiration (ET0) database: version 3. figshare https://doi.org/10.6084/m9.figshare.7504448.v5 (2019).

  135. Han, J. & Zhang, Z. The code for mapping the inundation extent and duration of flood events. Zenodo https://doi.org/10.5281/zenodo.11181120 (2024).

  136. Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive VODCA (1.0) [Data set]. Zenodo https://doi.org/10.5281/zenodo.2575599 (2019).

  137. Zhang, C. Code to support ‘Pervasive but biome-dependent relationship between fragmentation and resilience in global forests’. Zenodo https://zenodo.org/records/15488956 (2025).

  138. Trabucco, A. & Zomer, R. Global aridity index and potential evapotranspiration (ET0) climate database v2. 1705236666 bytes. figshare https://doi.org/10.6084/M9.figshare.7504448.V3 (2019).

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant nos. 42225104, 42471326 and 42125105), the National Key R&D Programme of China (no. 2024YFF1306600) and the Science and Technology Program of Guangdong (no. 2024B1212070012). C.W. was funded by the National Natural Science Foundation of China (42125101). J.C. was funded by the research grants ECO-FUN (PID2023-151488OB-I00) and MICROCLIM (PID2020-117636GB-C21).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and C.Z. designed the study and wrote the initial paper. C.W. and W.Z. designed the study and revised the paper. C.Z. collected the data and performed the analysis. All authors contributed to discuss the scientific question and revise the paper.

Corresponding authors

Correspondence to Yongxian Su, Chaoqun Zhang, Chaoyang Wu or Weiqi Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Celso Silva-Junior and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39 and Tables 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zhang, C., Cescatti, A. et al. Pervasive but biome-dependent relationship between fragmentation and resilience in forests. Nat Ecol Evol 9, 1670–1684 (2025). https://doi.org/10.1038/s41559-025-02776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02776-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing