Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of plasmid copy number and mutation rate in evolutionary outcomes

Abstract

Multicopy plasmids are widespread in nature and compose a common strategy for spreading beneficial traits across microbes. However, the role of plasmids in supporting the evolution of encoded genes remains underexplored due to challenges in experimentally manipulating key parameters such as plasmid copy number and mutation rate. Here we developed a strategy for controlling copy number in the plasmid-based Saccharomyces cerevisiae continuous evolution system, OrthoRep, and used our resulting capabilities to investigate the evolution of a conditionally essential gene under varying copy number and mutation rate conditions. Our results show that low copy number facilitated the faster enrichment of beneficial alleles whereas high copy number promoted robustness through the maintenance of allelic diversity. High copy number also slowed the removal of deleterious mutations and increased the fraction of non-functional alleles that could hitchhike during evolution. This study highlights the nuanced relationships between plasmid copy number, mutation rate and evolutionary outcomes, providing insights into the adaptive dynamics of genes encoded on multicopy plasmids and nominating OrthoRep as a versatile tool for studying plasmid evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: p1 CN achieved by three OrthoRep DNAPs expressed from eight promoters.
Fig. 2: Influence of CN on expression and growth rate.
Fig. 3: AmdSYM evolution experiment and CN stability.
Fig. 4: Assessment of amdSYM variants produced by evolution under varying CN and error rate.
Fig. 5: Comparison of relative activity of active allele libraries in acetamide versus butyramide.

Similar content being viewed by others

Data availability

Raw sequencing data can be found on the Sequence Read Archive under accession number PRJNA1236365. Comprehensive mutational data can be found in Supplementary Table 3.

Code availability

Custom code is described as pseudocode in the methods and Python scripts can be found via Zenodo at https://doi.org/10.5281/zenodo.15604699 (ref. 41) and MAPLE nanopore analysis via GitHub at https://github.com/gordonrix/maple.

References

  1. Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San Millán, Á. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 19, 347–359 (2021).

    Article  PubMed  Google Scholar 

  2. Fukuhara, H. Linear DNA plasmids of yeasts. FEMS Microbiol. Lett. 131, 1–9 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Handa, H. Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions? Mitochondrion 8, 15–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Pilla, G. & Tang, C. M. Going around in circles: virulence plasmids in enteric pathogens. Nat. Rev. Microbiol. 16, 484–495 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Brinkmann, H., Göker, M., Koblížek, M., Wagner-Döbler, I. & Petersen, J. Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae. ISME J. 12, 1994–2010 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Manzano-Marı́n, A. et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 14, 259–273 (2020).

    Article  Google Scholar 

  7. Moraïs, S. et al. Plasmid-encoded toxin defence mediates mutualistic microbial interactions. Nat. Microbiol. 9, 108–119 (2024).

    Article  PubMed  Google Scholar 

  8. San Millan, A. & MacLean, R. C. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.mtbp-0016-2017 (2017).

  9. Rouches, M. V., Xu, Y., Cortes, L. B. G. & Lambert, G. A plasmid system with tunable copy number. Nat. Commun. 13, 3908 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ilhan, J. et al. Segregational drift and the interplay between plasmid copy number and evolvability. Mol. Biol. Evol. 36, 472–486 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez-Beltran, J. et al. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat. Ecol. Evol. 2, 873–881 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat. Ecol. Evol. 1, 0010 (2016).

    Article  Google Scholar 

  13. Frank, S. A. Multiplicity of infection and the evolution of hybrid incompatibility in segmented viruses. Heredity 87, 522–529 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Santer, M., Kupczok, A., Dagan, T. & Uecker, H. Fixation dynamics of beneficial alleles in prokaryotic polyploid chromosomes and plasmids. Genetics 222, iyac121 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dewan, I. & Uecker, H. A mathematician’s guide to plasmids: an introduction to plasmid biology for modellers. Microbiology 169, 001362 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santer, M. & Uecker, H. Evolutionary rescue and drug resistance on multicopy plasmids. Genetics 215, 847–868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mei, H., Arbeithuber, B., Cremona, M. A., DeGiorgio, M. & Nekrutenko, A. A high-resolution view of adaptive event dynamics in a plasmid. Genome Biol. Evol. 11, 3022–3034 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ravikumar, A., Arrieta, A. & Liu, C. C. An orthogonal DNA replication system in yeast. Nat. Chem. Biol. 10, 175–177 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Ravikumar, A., Arzumanyan, G. A., Obadi, M. K. A., Javanpour, A. A. & Liu, C. C. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. Cell 175, 1946–1957.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rix, G. et al. Continuous evolution of user-defined genes at 1 million times the genomic mutation rate. Science 386, eadm9073 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, Z., Liu, C., Zhang, Z., Zheng, R. & Zheng, Y. Amidase as a versatile tool in amide-bond cleavage: from molecular features to biotechnological applications. Biotechnol. Adv. 43, 107574 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Patrick, W. M., Quandt, E. M., Swartzlander, D. B. & Matsumura, I. Multicopy suppression underpins metabolic evolvability. Mol. Biol. Evol. 24, 2716–2722 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Keren, L. et al. Promoters maintain their relative activity levels under different growth conditions. Mol. Syst. Biol. 9, 701 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ravasio, R. et al. A minimal scenario for the origin of non-equilibrium order. Preprint at https://arxiv.org/abs/2405.10911 (2025).

  25. Solis-Escalante, D. et al. amdsym, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res. 13, 126–139 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Diercks, C. S. et al. An orthogonal T7 replisome for continuous hypermutation and accelerated evolution in E. coli. Preprint at bioRxiv https://doi.org/10.1101/2024.07.25.605042 (2024).

  27. Tian, R. et al. Establishing a synthetic orthogonal replication system enables accelerated evolution in E. coli. Science 383, 421–426 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Molina, R. S. et al. In vivo hypermutation and continuous evolution. Nat. Rev. Methods Primers 2, 36 (2022).

    Article  CAS  Google Scholar 

  29. Stiffler, M. A., Hekstra, D. R. & Ranganathan, R. Evolvability as a function of purifying selection in TEM-1 β-lactamase. Cell 160, 882–892 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Wrenbeck, E. E., Azouz, L. R. & Whitehead, T. A. Single-mutation fitness landscapes for an enzyme on multiple substrates reveal specificity is globally encoded. Nat. Commun. 8, 15695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sarkisyan, K. S. et al. Local fitness landscape of the green fluorescent protein. Nature 533, 397–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodríguez-Beltrán, J. et al. Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. Proc. Natl Acad. Sci. USA 117, 15755–15762 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Duffy, S. Why are RNA virus mutation rates so damn high? PLoS Biol. 16, e3000003 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Holmes, E. C. Error thresholds and the constraints to RNA virus evolution. Trends Microbiol. 11, 543–546 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sýkora, M. et al. Transcription apparatus of the yeast virus-like elements: architecture, function, and evolutionary origin. PLoS Pathog. 14, e1007377 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brachmann, C. B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Javanpour, A. A. & Liu, C. C. Genetic compatibility and extensibility of orthogonal replication. ACS Synth. Biol. 8, 1249–1256 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gietz, R. D. & Schiestl, R. H. Frozen competent yeast cells that can be transformed with high efficiency using the LIAC/SS carrier DNA/peg method. Nat. Protoc. 2, 1–4 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Georgieva, B. & Rothstein, R. in Methods in Enzymology (eds Guthrie, C. & Fink, G. R.) 278–289 (Academic Press, 2002).

  40. Blount, B. A., Driessen, M. R. & Ellis, T. GC PREPS: fast and easy extraction of stable yeast genomic DNA. Sci. Rep. 6, 26863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pisera, O. copy_fitness_analysis: v1 copy number evolution assessment. Zenodo https://doi.org/10.5281/zenodo.15604699 (2025).

Download references

Acknowledgements

This work was funded by NIH R35GM136297 to C.C.L. A.‘O.’P. is supported by a Paul and Daisy Soros Fellowship for New Americans.

Author information

Authors and Affiliations

Authors

Contributions

A.‘O.’P. and C.C.L. conceived the project ideas. A.‘O.’P. designed and carried out all experiments, collected and processed all data and analysed all data with input from C.C.L. A.‘O.’P. and C.C.L. wrote the paper.

Corresponding author

Correspondence to Chang C. Liu.

Ethics declarations

Competing interests

C.C.L. is a co-founder of K2 Therapeutics, which uses OrthoRep in antibody engineering and evolution. The other authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Fabienne Benz, Alvaro San Millan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisera, A.‘., Liu, C.C. The role of plasmid copy number and mutation rate in evolutionary outcomes. Nat Ecol Evol 9, 1694–1704 (2025). https://doi.org/10.1038/s41559-025-02792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02792-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing