Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enlargement of sternum traits facilitated the evolution of powered flight in birds

Abstract

An enlarged sternum with a prominent keel is a central feature of the flight apparatus of modern birds. However, sterna of near-bird dinosaurs (Pennaraptora) and early avialans are either substantially different from those of living birds or absent altogether, raising questions about how specialized sternal structures evolved in birds and how they are related to function. This remains poorly understood because of the fragmentary nature of the fossil record, and the challenges in inferring form and function from crushed fossils. We use ancestral character estimations to trace sternal trait acquisition through the bird stem group, and multivariate phylogenetic regressions to analyse relationships between sternum morphology, body mass and flight capabilities. We find that sternum evolution was episodic: basal members of Pennaraptora had proportionally small sterna, which became larger and more craniocaudally elongated in Avialae. This enlargement precedes the appearance of a midline ridge, a possible precursor of the sternal keel, in Pygostylia. Sternum size increased again in crownward Ornithuromorpha, alongside a fully formed sternal keel and enlarged caudal projections, both critical areas of flight muscle attachment. Sternal experimentation in relation to flight characteristics occurs several times throughout Pennaraptora, including within Paraves and Enantiornithes, indicating that powered flight may have evolved several times before proliferating in crown-group birds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fossil sterna from representative taxa included in the study.
Fig. 2: Phylogenetic generalized least squares analysis of relative sternum plate area (n = 112 extant taxa; n = 28 fossil taxa).
Fig. 3: Ancestral character estimation of relative sternum plate area.
Fig. 4: Phylogenetic generalized least squares analysis of sternum length relative to width (n = 112 extant taxa; n = 28 fossil taxa).
Fig. 5: Ancestral state estimation of discrete sternal traits (n = 112 extant taxa; n = 31 fossil taxa).
Fig. 6: The evolution of the sternum across the dinosaur–bird transition.

Similar content being viewed by others

Data availability

Data generated and analysed in this study are available via Dryad at https://doi.org/10.5061/dryad.jsxksn0ng (ref. 135).

Code availability

R code for analyses performed here are available via Dryad at https://doi.org/10.5061/dryad.jsxksn0ng (ref. 135).

References

  1. Hou, L., Martin, L. D., Zhou, Z. & Feduccia, A. Early adaptive radiation of birds: evidence from fossils from northeastern China. Science 274, 1164–1167 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Chiappe, L. M. The first 85 million years of avian evolution. Nature 378, 349–355 (1995).

    Article  CAS  Google Scholar 

  3. Owen, R. On the Anatomy of Vertebrates: Birds and Mammals (Longmans, Green and Company, 1866).

  4. O’Connor, J. K. et al. Evolution and functional significance of derived sternal ossification patterns in ornithothoracine birds. J. Evol. Biol. 28, 1550–1567 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mayr, G. Pectoral girdle morphology of Mesozoic birds and the evolution of the avian supracoracoideus muscle. J. Ornithol. 158, 859–867 (2017).

    Article  Google Scholar 

  6. Lowi-Merri, T., Benson, R. B. J., Claramunt, S. & Evans, D. C. The relationship between sternum variation and mode of locomotion in birds. BMC Biol. 19, 165 (2021).

  7. Nopcsa, B. F. Ideas on the origin of flight. Proc. Zool. Soc. Lond. 77, 223–236 (1907).

    Article  Google Scholar 

  8. Ostrom, J. H. Archaeopteryx and the origin of flight. Q. Rev. Biol. 49, 27–47 (1974).

    Article  Google Scholar 

  9. Padian, K. Cross-testing adaptive hypotheses: phylogenetic analysis and the origin of bird flight. Am. Zool. 41, 598–607 (2001).

    Google Scholar 

  10. Zhou, Z. & Zhang, F. Mesozoic birds of China—a synoptic review. Front. Biol. China 2, 1–14 (2007).

    Article  Google Scholar 

  11. Lindsay, B. On the avian sternum. Proc. Zool. Soc. Lond. 53, 684–716 (1885).

    Article  Google Scholar 

  12. Zheng, X., Wang, X., O’Connor, J. & Zhou, Z. Insight into the early evolution of the avian sternum from juvenile enantiornithines. Nat. Commun. 3, 1116–1118 (2012).

    Article  PubMed  Google Scholar 

  13. Lull, R. S. Volant adaptation in vertebrates. Am. Nat. 40, 537–566 (1906).

    Article  Google Scholar 

  14. Ridpath, M. The Tasmanian native hen, Tribonyx mortierii. III. Ecology. CSIRO Wildl. Res. 17, 91–118 (1972).

    Article  Google Scholar 

  15. Ostrom, J. H. Archaeopteryx and the origin of birds. Biol. J. Linn. Soc. 8, 91–182 (1976).

    Article  Google Scholar 

  16. Heimerdinger, M. A. & Ames, P. L. Variation in the sternal notches of suboscine passeriform birds. Postilla 105, 1–44 (1967).

    Google Scholar 

  17. Feduccia, A. The Origin and Evolution of Birds (Yale Univ. Press, 1996).

  18. Wang, M. & Zhou, Z. in The Biology of the Avian Respiratory System: Evolution, Development, Structure and Function (ed. Maina, J.) 1–26 (Springer, 2017).

  19. Burgers, P. & Chiappe, L. M. The wing of Archaeopteryx as a primary thrust generator. Nature 399, 60–62 (1999).

    Article  CAS  Google Scholar 

  20. Dececchi, T. A., Larsson, H. C. E. & Habib, M. B. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents. PeerJ 4, e2159 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heers, A. M., Baier, D. B., Jackson, B. E. & Dial, K. P. Flapping before flight: high resolution, three-dimensional skeletal kinematics of wings and legs during avian development. PLoS ONE 11, e0153446 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burnham, D. A. Archaeopteryx—a re-evaluation suggesting an arboreal habitat and an intermediate stage in trees down origin of flight. Neues Jb. Geol. Paläontol. Abh. 245, 33–44 (2007).

    Article  Google Scholar 

  23. Dial, K. P., Randall, R. J. & Dial, T. R. What use is half a wing in the ecology and evolution of birds? Bioscience 56, 437–445 (2006).

    Article  Google Scholar 

  24. Nudds, R. L. & Dyke, G. J. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke. Evolution 63, 994–1002 (2009).

    Article  PubMed  Google Scholar 

  25. Senter, P. Scapular orientation in the theropods and basal birds, and the origin of flapping flight. Acta Palaeontol. Pol. 51, 305–313 (2006).

    Google Scholar 

  26. Voeten, D. F. A. E. et al. Wing bone geometry reveals active flight in Archaeopteryx. Nat. Commun. 9, 923 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Serrano, F. J. & Chiappe, L. M. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution. J. R. Soc. Interface 14, 20170182 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pei, R. et al. Potential for powered flight neared by most close avialan relatives, but few crossed its thresholds. Curr. Biol. 30, 4033–4046 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Dial, K. P. Wing-assisted incline running and the evolution of flight. Science 299, 402–404 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Jackson, B. E., Tobalske, B. W. & Dial, K. P. The broad range of contractile behaviour of the avian pectoralis: functional and evolutionary implications. J. Exp. Biol. 214, 2354–2361 (2011).

    Article  PubMed  Google Scholar 

  31. Marsh, O. C. Odontornithes: A Monograph of the Extinct Toothed Birds of North America (G.P.O, 1880).

  32. Zheng, X. et al. On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum. Proc. Natl Acad. Sci. USA 111, 13900–13905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pittman, M. et al. Preserved soft anatomy confirms shoulder-powered upstroke of early theropod flyers, reveals enhanced early pygostylian upstroke, and explains early sternum loss. Proc. Natl Acad. Sci. USA 119, e2205476119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, X. et al. Basal paravian functional anatomy illuminated by high-detail body outline. Nat. Commun. 8, 14576 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zheng, X. et al. Structure and possible ventilatory function of unusual, expanded sternal ribs in the Early Cretaceous bird Jeholornis. Cretac. Res. 116, 104597 (2020).

    Article  Google Scholar 

  36. Hou, L.-H. et al. Confuciusornis sanctus, a new Late Jurassic sauriurine bird from China. Chinese Sci. Bull. 40, 1545–1551 (1995).

  37. O’Connor, J. K., Zheng, X.-T., Hu, H., Wang, X.-L. & Zhou, Z.-H. The morphology of Chiappeavis magnapremaxillo (Pengornithidae: Enantiornithes) and a comparison of aerodynamic function in Early Cretaceous avian tail fans. Vertebr. Palasiat. 55, 41–58 (2017).

    Google Scholar 

  38. Wang, M., Oconnor, J. K. & Zhou, Z. A new robust enantiornithine bird from the Lower Cretaceous of China with scansorial adaptations. J. Vertebr. Paleontol. 34, 657–671 (2014).

    Article  Google Scholar 

  39. O’Connor, J. K., Chiappe, L. M., Gao, C. & Zhao, B. Anatomy of the early cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontol. Pol. 56, 463–475 (2011).

    Article  Google Scholar 

  40. Wu, Q., O’Connor, J. K., Wang, S. & Zhou, Z. Transformation of the pectoral girdle in pennaraptorans: critical steps in the formation of the modern avian shoulder joint. PeerJ 12, e16960 (2024).

  41. Wang, S. et al. Digital restoration of the pectoral girdles of two Early Cretaceous birds, and implications for early flight evolution. eLife 11, e76086 (2022).

  42. Heers, A. M., Varghese, S. L., Hatier, L. K. & Cabrera, J. J. Multiple functional solutions during flightless to flight-capable transitions. Front. Ecol. Evol. 8, 573411 (2021).

  43. Lowi-Merri, T. M. et al. Reconstructing locomotor ecology of extinct avialans: a case study of Ichthyornis comparing sternum morphology and skeletal proportions. Proc. R. Soc. B 290, 20222020 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu, X. et al. Four-winged dinosaurs from China. Nature 421, 335–340 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Godfrey, S. J. & Currie, P. J. A in Feathered Dragons: Studies on the Transition from Dinosaurs to Birds (eds Currie, P. J. et al.) 144–149 (Indiana Univ. 2004).

  46. Chiappe, L. M., Ji, S., Ji, Q. & Norell, M. A. Anatomy and Systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of Northeastern China (American Museum of Natural History, 1999).

  47. Martin, L. D., Zhou, Z., Hou, L. & Feduccia, A. Confuciusornis sanctus compared to Archaeopteryx lithographica. Naturwissenschaften 85, 286–289 (1998).

    Article  CAS  Google Scholar 

  48. O’Connor, J. K., Zheng, X., Xiaoli, W., Zhang, X. & Zhou, Z. The gastral basket in basal birds and their close relatives: size and possible function. Vertebr. Palasiat. 53, 133–152 (2015).

    Google Scholar 

  49. Wang, M. & Zhou, Z. A morphological study of the first known piscivorous enantiornithine bird from the Early Cretaceous of China. J. Vertebr. Paleontol. 37, e1278702 (2017).

    Article  Google Scholar 

  50. Hou, L., Chiappe, L. M., Zhang, F. & Chuong, C. M. New Early Cretaceous fossil from China documents a novel trophic specialization for Mesozoic birds. Naturwissenschaften 91, 22–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Chiappe, L. M. & Calvo, J. O. Neuquenornis volans, a new late Cretaceous bird (Enantiornithes: Avisauridae) from Patagonia, Argentina. J. Vertebr. Paleontol. 14, 230–246 (1994).

    Article  Google Scholar 

  52. Wang, Y. M., O’Connor, J. K., Li, D. Q. & You, H. L. New information on postcranial skeleton of the Early Cretaceous Gansus yumenensis (Aves: Ornithuromorpha). Hist. Biol. 28, 666–679 (2016).

    Article  Google Scholar 

  53. Zhou, S., Zhou, Z. & O’Connor, J. A new piscivorous ornithuromorph from the Jehol Biota. Hist. Biol. 26, 608–618 (2014).

    Article  Google Scholar 

  54. Wang, M., Zhou, Z. & Zhou, S. A new basal ornithuromorph bird (Aves: Ornithothoraces) from the Early Cretaceous of China with implication for morphology of early Ornithuromorpha. Zool. J. Linn. Soc. 176, 207–223 (2016).

    Article  Google Scholar 

  55. Wang, M., Zhou, Z. & Zhou, S. Corrigendum: Renaming of Bellulia Wang, Zhou & Zhou, 2016. Zool. J. Linn. Soc. 177, 695 (2016).

    Article  Google Scholar 

  56. O’Connor, J. K., Wang, M., Zhou, S. & Zhou, Z. Osteohistology of the Lower Cretaceous Yixian formation ornithuromorph (Aves) Iteravis huchzermeyeri. Palaeontol. Electron. 18.2.35A, 1–11 (2015).

    Google Scholar 

  57. Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Bell, A. & Chiappe, L. M. The Hesperornithiformes: a review of the diversity, distribution, and ecology of the earliest diving birds. Diversity 14, 267 (2022).

  59. Orkney, A., Bjarnason, A., Tronrud, B. C. & Benson, R. B. J. Patterns of skeletal integration in birds reveal that adaptation of element shapes enables coordinated evolution between anatomical modules. Nat. Ecol. Evol. 5, 1250–1258 (2021).

    Article  PubMed  Google Scholar 

  60. Zhang, Y.-G., Li, Z., Liu, D., Liu, Q.-G. & Fu, L. The diversity of morphology of the avian sternum and its relationship with flight ability. Sichuan J. Zool. 5, 677–686 (2011).

    Google Scholar 

  61. Yu, Y., Zhang, C. & Xu, X. Deep time diversity and the early radiations of birds. Proc. Natl Acad. Sci. USA 118, e2019865118 (2021).

  62. Wang, M., Lloyd, G. T., Zhang, C., Zhou, Z. & Lloyd, G. T. The patterns and modes of the evolution of disparity in Mesozoic birds. Proc. R. Soc. B 288, 20203105 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Allen, V., Bates, K. T., Li, Z. & Hutchinson, J. R. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs. Nature 497, 104–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Macaulay, S. et al. Decoupling body shape and mass distribution in birds and their dinosaurian ancestors. Nat. Commun. 14, 1575 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Olson, S. & Feduccia, A. Flight capability and the pectoral girdle of Archaeopteryx. Nature 278, 247–248 (1979).

    Article  Google Scholar 

  66. Chamberlain, F. W. Atlas of Avian Anatomy: Osteology-Arthrology-Myology (Michigan State College Agricultural Experiment Station, 1943).

  67. Baumel, J. J. & Witmer, L. M. in Handbook of Avian Anatomy: Nomina Anatomica Avium (eds Baumel, J. J. et al.) 45–131 (Nuttall Ornithological Club, 1993).

  68. Bock, W. J. The furcula and the evolution of avian flight. Paleontol. J. 47, 1236–1244 (2013).

    Article  Google Scholar 

  69. Meyers, R. A. & Stakebake, E. F. Anatomy and histochemistry of spread-wing posture in birds. 3. Immunohistochemistry of flight muscles and the ‘shoulder lock’ in albatrosses. J. Morphol. 263, 12–29 (2005).

    Article  PubMed  Google Scholar 

  70. Pennycuick, C. J. Animal Flight (Edward Arnold, 1972).

  71. Zhou, Z. & Farlow, J. O. in New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom (eds Gauthier, J. & Gall, L. F.) 237–254 (Peabody Museum of Natural History Yale Univ., 2001).

  72. Rayner, J. M. V. in New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom (eds Gauthier, J. A. & Gall, L. F.) 363–388 (Peabody Museum of Natural History Yale Univ., 2001).

  73. Sy, M. Funktionell-anatomische Untersuchungen am Vogelflügel. J. Ornithol. 84, 199–296 (1936).

    Article  Google Scholar 

  74. Brown, R. H. J. The flight of birds. Biol. Rev. 38, 460–489 (1963).

    Article  Google Scholar 

  75. Pennycuick, C. J. Modelling the Flying Bird (Elsevier, 2008).

  76. Chiappe, L. M. & Walker, C. A. in Mesozoic Birds: Above the Heads of Dinosaurs (eds Chiappe, L. M. & Witmer, L. M.) 240–267 (Univ. California Press, 2002).

  77. Wong, M. & Carter, D. Mechanical stress and morphogenetic endochondral ossification of the sternum. J. Bone Joint Surg. Am. 70, 992–1000 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Falk, A. R., Kaye, T. G., Zhou, Z. & Burnham, D. A. Laser fluorescence illuminates the soft tissue and life habits of the early Cretaceous bird Confuciusornis. PLoS ONE 11, e0167284 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Feduccia, A. The Age of Birds (Harvard Univ. Press, 1980).

  80. Burnham, D. A., Feduccia, A., Martin, L. D. & Falk, A. R. Tree climbing—a fundamental avian adaptation. J. Syst. Palaeontol. 9, 103–107 (2011).

    Article  Google Scholar 

  81. Jasinoski, S. C., Russell, A. P. & Currie, P. J. An integrative phylogenetic and extrapolatory approach to the reconstruction of dromaeosaur (Theropoda: Eumaniraptora) shoulder musculature. Zool. J. Linn. Soc. 146, 301–344 (2006).

    Article  Google Scholar 

  82. Walker, C. A. & Dyke, G. J. Euenantiornithine birds from the Late Cretaceous of El Brete (Argentina). Ir. J. Earth Sci. 27, 15–62 (2009).

    Google Scholar 

  83. Atterholt, J., Howard Hutchison, J. & O'Connor, J. K. The most complete enantiornithine from North America and a phylogenetic analysis of the Avisauridae. PeerJ 2018, e5910 (2018).

    Article  Google Scholar 

  84. Happ, J., Elsler, A., Kriwet, J., Pfaff, C. & Bochenski, Z. M. Two passeriform birds (Aves: Passeriformes) from the Middle Miocene of Austria. PalZ 96, 313–321 (2022).

    Article  Google Scholar 

  85. Chiappe, L. M., Serrano, F. J., Abramowicz, S. & Göhlich, U. B. Flight performance of the Early Cretaceous bird Confuciusornis sanctus: evidence from an exceptionally preserved fossil. Span. J. Palaeontol. 38, 101–122 (2023).

    Article  Google Scholar 

  86. Xu, X. et al. A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin. Chin. Sci. Bull. 54, 430–435 (2009).

    Article  Google Scholar 

  87. Gao, C. et al. A subadult specimen of the early Cretaceous bird Sapeornis chaoyangensis and a taxonomic reassessment of sapeornithids. J. Vertebr. Paleontol. 32, 1103–1112 (2012).

    Article  CAS  Google Scholar 

  88. Kundrát, M., Nudds, J., Kear, B. P., Lü, J. & Ahlberg, P. The first specimen of Archaeopteryx from the Upper Jurassic Mörnsheim Formation of Germany. Hist. Biol. 31, 3–63 (2019).

    Article  Google Scholar 

  89. Longrich, N. R., Vinther, J., Meng, Q., Li, Q. & Russell, A. P. Primitive wing feather arrangement in Archaeopteryx lithographica and Anchiornis huxleyi. Curr. Biol. 22, 2262–2267 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Lambertz, M. & Perry, S. F. Remarks on the evolution of the avian sternum, dinosaur gastralia, and their functional significance for the respiratory apparatus. Zool. Anz. 255, 80–84 (2015).

    Article  Google Scholar 

  91. Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).

  92. Wang, Y. M., O’Connor, J. K., Li, D. Q. & You, H. L. Previously unrecognized ornithuromorph bird diversity in the Early Cretaceous Changma Basin, Gansu Province, Northwestern China. PLoS ONE 8, e77693 (2013).

  93. Vazquez, R. J. The automating skeletal and muscular mechanisms of the avian wing (Aves). Zoomorphology 114, 59–71 (1994).

    Article  Google Scholar 

  94. Clarke, J. A., Zhou, Z. & Zhang, F. Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui. J. Anat. 208, 287–308 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pittman, M. et al. Exceptional preservation and foot structure reveal ecological transitions and lifestyles of early theropod flyers. Nat. Commun. 13, 7684 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bell, A. & Chiappe, L. M. Statistical approach for inferring ecology of Mesozoic birds. J. Syst. Palaeontol. 9, 119–133 (2011).

    Article  Google Scholar 

  97. Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Pei, R., Li, Q., Meng, Q., Norell, M. A. & Gao, K. Q. New Specimens of Anchiornis huxleyi (Theropoda: Paraves) from the Late Jurassic of Northeastern China (American Museum of Natural History, 2017).

  99. Zhou, Z. & Zhang, F. Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Can. J. Earth Sci. 40, 731–747 (2003).

    Article  Google Scholar 

  100. Borchers, H. W. & Borchers, M. H. W. pracma. R package version 2.4.2. (2022).

  101. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

  102. Anderson, J. F., Hall‐Martin, A. & Russell, D. A. Long‐bone circumference and weight in mammals, birds and dinosaurs. J. Zool. 207, 53–61 (1985).

    Article  Google Scholar 

  103. Christiansen, P. & Fariña, R. A. Mass prediction in theropod dinosaurs. Hist. Biol. 16, 85–92 (2004).

    Article  Google Scholar 

  104. Campbell, K. E. Jr & Marcus, L. in Papers in Avian Paleontology Honoring Pierce Brodkorb 395–412 (Natural History Museum of Los Angeles County, 1992).

  105. Campione, N. E., Evans, D. C., Brown, C. M. & Carrano, M. T. Body mass estimation in non-avian bipeds using a theoretical conversion to quadruped stylopodial proportions. Methods Ecol. Evol. 5, 913–923 (2014).

    Article  Google Scholar 

  106. Campione, N. E. Extrapolating body masses in large terrestrial vertebrates. Paleobiology 43, 693–699 (2017).

    Article  Google Scholar 

  107. Campione, N. E. MASSTIMATE: body mass estimation equations for vertebrates. R package version 2.0 (2022).

  108. Gingerich, P. D. Arithmetic or geometric normality of biological variation: an empirical test of theory. J. Theor. Biol. 204, 201–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Bell, M. A. & Lloyd, G. T. strap. R package version 1.6-0 (2022).

  113. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. (eds) Handbook of the Birds of the World Alive (Lynx Edicions, 2014).

  114. Birds of the World (Cornell Laboratory of Ornithology, 2022).

  115. Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B https://doi.org/10.1098/rstb.1989.0106 (1989).

  116. Orme, D. et al. caper. R package version 1.0.1 (2018).

  117. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).

    Article  Google Scholar 

  118. Sugiura, N. Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun. Stat. Theory Method. 7, 13–26 (1978).

    Article  Google Scholar 

  119. Choiniere, J. N. et al. Evolution of vision and hearing modalities in theropod dinosaurs. Science 613, 610–613 (2021).

    Article  Google Scholar 

  120. Fabbri, M. et al. Subaqueous foraging among carnivorous dinosaurs. Nature 603, 852–857 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article  Google Scholar 

  122. Goolsby, E. W. Rapid maximum likelihood ancestral state reconstruction of continuous characters: a rerooting-free algorithm. Ecol. Evol. 7, 2791–2797 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Revell, L. J. & Harmon, L. J. Phylogenetic Comparative Methods in R (Princeton Univ. Press, 2022).

  124. Revell, L. J. phytools. R package version 1.5-1 (2023).

  125. Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinf. 7, 88 (2006).

  126. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  127. Motani, R. & Schmitz, L. Phylogenetic versus functional signals in the evolution of form–function relationships in terrestrial vision. Evolution 65, 2245–2257 (2011).

    Article  PubMed  Google Scholar 

  128. Schmitz, L. & Motani, R. Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science 332, 705–708 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Hermanson, G. et al. Cranial ecomorphology of turtles and neck retraction as a possible trigger of ecological diversification. Evolution 76, 2566–2586 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Navalón, G., Bjarnason, A., Griffiths, E. & Benson, R. B. J. Environmental signal in the evolutionary diversification of bird skeletons. Nature 611, 306–311 (2022).

    Article  PubMed  Google Scholar 

  131. Watanabe, J. Quantitative discrimination of flightlessness in fossil Anatidae from skeletal proportions. Auk 134, 672–695 (2017).

    Article  Google Scholar 

  132. Stoessel, A., Kilbourne, B. M. & Fischer, M. S. Morphological integration versus ecological plasticity in the avian pelvic limb skeleton. J. Morphol. 274, 483–495 (2013).

    Article  PubMed  Google Scholar 

  133. Mosimann, J. E. Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. J. Am. Stat. Assoc. 65, 930–945 (1970).

    Article  Google Scholar 

  134. Adams, D. C. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution 68, 2675–2688 (2014).

    Article  PubMed  Google Scholar 

  135. Lowi-Merri, T. M. et al. Data from: Enlargement of sternum traits facilitated the evolution of powered flight in birds. Dryad https://doi.org/10.5061/dryad.jsxksn0ng (2025).

Download references

Acknowledgements

We would like to thank A. Bailleul, M. Wang and Z. Zhonghe at the Institute of Vertebrate Palaeontology and Palaeoanthropology, as well as H. Gibbins, C. Coy and P. Currie at the University of Alberta Laboratory for Vertebrate Palaeontology for assistance and access to fossil specimens. J. Benito and D. Field (University of Cambridge) provided the reconstruction of Ichthyornis used in this study. Useful discussions, guidance and methodological assistance were provided by G. Funston, L. Mahler, J. Weir, D. McLennan and H. Larsson. This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) postgraduate scholarship (PGSD3-547147-2020) to T.M.L.-M., as well as NSERC Discovery Grants to D.C.E. (RGPIN-2018-06788) and S.C. (RGPIN-2018-06747). R.B. acknowledges support from the European Union’s Horizon 2020 research and innovation programme 2014–2018 under grant agreement no. 677774 (European Research Council starting grant: TEMPO). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.M.L.-M., R.B., S.C. and D.C.E. conceived and designed the project. R.B., H.H. and J.O. provided substantial data and verified data quality. T.M.L.-M. collected morphological and stratigraphic data, conducted all analyses and interpretations and wrote the initial paper draft. T.M.L.-M., R.B., H.H., J.O., S.C. and D.C.E. edited the paper.

Corresponding author

Correspondence to Talia M. Lowi-Merri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Michael Pittman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Discriminant analysis results.

Results from 100 iterations of the phylogenetic flexible discriminant analysis (pFDA) for the presence of forelimb propulsion ability in each of the fossil species, based on relative footprint area to body mass (N = 112 extant taxa; N = 28 fossil taxa). Blue values are from the pFDA that incorporates minimum body mass estimates, and orange values are maximum body mass estimates; corresponding dotted lines represent first quartile, median, and third quartile of estimates over 100 replicates of the analysis. X-axes represent probabilities for the presence of forelimb propulsion over 100 iterations of the analysis, and y-axes represent frequency of probabilities across 100 iterations. The red dotted line in the middle represents the 50% probability for flight presence, and the grey rectangle demarcates 0.33 to 0.67 probability, or the zone of uncertainty. Median probabilities (‘Mdn’) for flight presence are given for both body mass estimates. Values that are greater than 0.67 indicate that flight is likely present in the taxon, while less than 0.33 indicates that flight is likely absent; median probabilities in between fall in the uncertainty zone. Panels A-Z correspond with analyses performed for each fossil taxon.

Extended Data Fig. 2 Ancestral character estimation from results of discriminant analysis.

Ancestral character estimation of median probability of flight presence across the dinosaur-bird transition from the discriminant analysis based on relative sternum plate area using minimum body mass estimates (left) and maximum body mass estimates (right) (N = 28 fossil taxa). Darker colours indicate a likely presence of flight ability in the taxon, lighter colours indicate likely absence of flight ability. The extant portion of the tree was condensed into a single branch labelled ‘Neornithes’, setting the tip value at 0, which represents the relative value for the ancestor of the living bird crown group, Neornithes.

Supplementary information

Supplementary Information

Supplementary Results, Figs. 1–9 and Tables 1–10.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lowi-Merri, T.M., Benson, R., Hu, H. et al. Enlargement of sternum traits facilitated the evolution of powered flight in birds. Nat Ecol Evol 9, 1705–1718 (2025). https://doi.org/10.1038/s41559-025-02795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02795-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing