Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Geochemical chronologies in Paranthropus robustus teeth inform habitat and life histories

This article has been updated

Abstract

Radiogenic strontium isotopes (87Sr/86Sr) and the alkaline earth ratios (AERs) Sr/Ca and Ba/Ca in fossil dental enamel can inform the habitat, residence and life histories of early hominins recovered from the Pleistocene cradle-of-humankind sites of Gauteng, South Africa. Key questions, which may be addressed with these indices, are the relative exploitation of wet versus dry botanic regimes and whether early hominins dispersed in a manner similar to that of chimpanzees (characterized by male philopatry and female dispersal at puberty) or to that of humans (who are not so characterized). Here we developed 28 new dental chronologies in 20 Paranthropus robustus teeth from Swartkrans and Kromdraai. Resulting geochemical time series demonstrate that, while maternal 87Sr/86Sr in earlier-forming teeth varies widely, third molar 87Sr/86Sr, derived from postweaning solid foods, progressively converges to 0.7306 ± 0.0035 (± 2 s.d.), which we express as the local isotopically delineated exploitation area (LIDEA). The spatial resolution of LIDEA is determined using a bioavailable 87Sr/86Sr isoscape. In this environmental context, we interpret LIDEA as a quantifiable signal indicating eurytopy (generalization), with some 30% of Sr deriving from riparian woodland habitats. With regard to residence, many individuals arrived at the site after second molar mineralization, while some matured locally, demonstrating both male and female dispersal as well as lifelong local residence. Analysis of both 87Sr/86Sr and the AERs further highlights concomitant patterns, as well as numerous periodicities that may be related to resource depletion, seasonality or lunar cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time series of 87Sr/86Sr reveal habitat and residence.
Fig. 2: Bioavailable 87Sr/86Sr isoscape and assignation maps.
Fig. 3: Time series of 87Sr/86Sr and Sr/Ca reveal periodicities of residence and diet.
Fig. 4: Results of Ba/Ca time-series analyses for P. robustus.

Similar content being viewed by others

Data availability

Raw data are available on Zenodo at https://doi.org/10.5281/zenodo.14497676 (ref. 50), resampled data are available on Zenodo at https://doi.org/10.5281/zenodo.14355254 (ref. 51), final data are available on Zenodo at https://doi.org/10.5281/zenodo.14363950 (ref. 52) and input data for the isoscape calculation are available on Zenodo at https://doi.org/10.5281/zenodo.15496905 (ref. 54).

Code availability

All links to relevant R scripts are available on Zenodo at https://doi.org/10.5281/zenodo.15497667 (ref. 53).

Change history

  • 11 August 2025

    In the version of this article initially published, there was a citation error in the Fig. 1d caption where, in the sentence now reading "Data from ref. 9", ref. 11 was cited initially. The legend is updated in the HTML and PDF versions of the article.

References

  1. Sillen, A., Hall, G. & Armstrong, R. Strontium calcium ratios (Sr/Ca) and strontium isotopic ratios (87Sr/86Sr) of Australopithecus robustus and Homo sp. from Swartkrans. J. Hum. Evol. 28, 277–285 (1995).

    Article  Google Scholar 

  2. Copeland, S. R. et al. Strontium isotope evidence for landscape use by early hominins. Nature 474, 76–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Balter, V., Braga, J., Télouk, P. & Thackeray, J. F. Evidence for dietary change but not landscape use in South African early hominins. Nature 489, 558–560 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Sillen, A. & Balter, V. Strontium isotopic aspects of Paranthropus robustus teeth; implications for habitat, residence, and growth. J. Hum. Evol. 114, 118–130 (2018).

    Article  PubMed  Google Scholar 

  5. Hamilton, M. I., Copeland, S. R. & Nelson, S. V. A reanalysis of strontium isotope ratios as indicators of dispersal in South African hominins. J. Hum. Evol. 187, 103480 (2024).

    Article  PubMed  Google Scholar 

  6. Brain, C. K. The Hunters or the Hunted? An Introduction to African Cave Taphonomy (Univ. Chicago Press, 1981).

  7. Bredenkamp, G. J. & Brown, L. R. A reappraisal of Acocks’ bankenveld: origin and diversity of vegetation types. S. Afr. J. Bot. 69, 7–26 (2003).

    Article  Google Scholar 

  8. Hall, G. A Background Investigation into the Feasibility of Heavy Stable Isotopes (87Sr/86Sr) as Source Tracers of Early Hominids. MSc thesis, Univ. Cape Town (1995).

  9. Sillen, A., Hall, G., Richardson, S. & Armstrong, R. 87Sr/86Sr ratios in modern and fossil food-webs of the Sterkfontein Valley: implications for early hominid habitat preference. Geochim. Cosmochim. Acta 62, 2463–2473 (1998).

    Article  CAS  Google Scholar 

  10. Peters, C. R. & Maguire, B. Wild plant foods of the Makapansgat area: a modern ecosystems analogue for Australopithecus africanus adaptations. J. Hum. Evol. 10, 565–583 (1981).

    Article  Google Scholar 

  11. Lee-Thorp, J. A., Sponheimer, M. & Luyt, J. Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. J. Hum. Evol. 53, 595–601 (2007).

    Article  PubMed  Google Scholar 

  12. Robinson, J. T. in African Ecology and Human Evolution (eds Bourliere, F. & Howell, C. F.) 385–416 (Routledge, 1963).

  13. Wood, B. & Strait, D. Patterns of resource use in early Homo and Paranthropus. J. Hum. Evol. 46, 119–162 (2004).

    Article  PubMed  Google Scholar 

  14. Lee-Thorp, J. The demise of “Nutcracker Man”. Proc. Natl Acad. Sci. USA 108, 9319–9320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee-Thorp, J. A., van der Merwe, N. J. & Brain, C. K. Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis. J. Hum. Evol. 27, 361–372 (1994).

    Article  Google Scholar 

  16. Sponheimer, M. et al. Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science 314, 980–982 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Kramer, K. L. The human family—its evolutionary context and diversity. Soc. Sci. 10, 191 (2021).

    Article  Google Scholar 

  18. Pusey, A. E. & Schroepfer-Walker, K. Female competition in chimpanzees. Philos. Trans. R. Soc. Lond. B 368, 20130077 (2013).

    Article  Google Scholar 

  19. Robbins, M. M. et al. Social structure and life-history patterns in western gorillas (Gorilla gorilla gorilla). Am. J. Primatol. 64, 145–159 (2004).

    Article  PubMed  Google Scholar 

  20. Plavcan, J. M. A re-analysis of sex differences in landscape use in early hominins: a comment on Copeland and colleagues. J. Hum. Evol. 63, 764–769 (2012).

    Article  PubMed  Google Scholar 

  21. Lugli, F. et al. Strontium and stable isotope evidence of human mobility strategies across the Last Glacial Maximum in southern Italy. Nat. Ecol. Evol. 3, 905–911 (2019).

    Article  PubMed  Google Scholar 

  22. Matsumoto, T. Developmental changes in feeding behaviors of infant chimpanzees at Mahale, Tanzania: implications for nutritional independence long before cessation of nipple contact. Am. J. Phys. Anthropol. 163, 356–366 (2017).

    Article  PubMed  Google Scholar 

  23. Kuykendall, K. L. Dental development in chimpanzees (Pan troglodytes): the timing of tooth calcification stages. Am. J. Phys. Anthropol. 99, 135–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Kralick, A. E. et al. A radiographic study of permanent molar development in wild Virunga mountain gorillas of known chronological age from Rwanda. Am. J. Phys. Anthropol. 163, 129–147 (2017).

    Article  PubMed  Google Scholar 

  25. Smith, T. M. et al. Dental ontogeny in pliocene and early pleistocene hominins. PLoS ONE 10, e0118118 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dean, M. C., Beynon, A. D., Thackeray, J. F. & Macho, G. A. Histological reconstruction of dental development and age at death of a juvenile Paranthropus robustus specimen, SK 63, from Swartkrans, South Africa. Am. J. Phys. Anthropol. 91, 401–419 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Dean, C. et al. Growth and development of the third permanent molar in Paranthropus robustus from Swartkrans, South Africa. Sci. Rep. 10, 19053 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hanon, R. et al. New fossil Bovidae (Mammalia: Artiodactyla) from Kromdraai Unit P, South Africa and their implication for biochronology and hominin palaeoecology. Quat. Sci. Rev. 331, 108621 (2024).

    Article  Google Scholar 

  29. Pickering, R. et al. U–Pb-dated flowstones restrict South African early hominin record to dry climate phases. Nature 565, 226–229 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Bataille, C. P., Crowley, B. E., Wooller, M. J. & Bowen, G. J. Advances in global bioavailable strontium isoscapes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 555, 109849 (2020).

    Article  Google Scholar 

  31. Le Corre, M. et al. An ensemble machine learning bioavailable strontium isoscape for Eastern Canada. FACETS 10, 1–17 (2025).

    Article  Google Scholar 

  32. Britton, K. et al. Multi-isotope zooarchaeological investigations at Abri du Maras: the paleoecological and paleoenvironmental context of Neanderthal subsistence strategies in the Rhône Valley during MIS 3. J. Hum. Evol. 174, 103292 (2023).

    Article  PubMed  Google Scholar 

  33. Dirks, P. H. G. M. & Berger, L. R. Hominin-bearing caves and landscape dynamics in the Cradle of Humankind, South Africa. J. Afr. Earth Sci. 78, 109–131 (2013).

    Article  Google Scholar 

  34. Judson, K. et al. Socioecological factors influencing intraspecific variation in ranging dynamics of western lowland gorillas (Gorilla gorilla gorilla) in Ndoki Forest. Am. J. Primatol. 86, e23586 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki, A. An ecological study of chimpanzees in a savanna woodland. Primates 10, 103–148 (1969).

    Article  Google Scholar 

  36. Slater, K., Barrett, A. & Brown, L. R. Home range utilization by chacma baboon (Papio ursinus) troops on Suikerbosrand Nature Reserve, South Africa. PLoS ONE 13, e0194717 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee, R. B. Subsistence Ecology of Kung Bushmen (Univ. California, 1965).

  38. Silberbauer, G. in Omnivorous Primates. Gathering and Hunting in Human Evolution (eds Harding, R. S. O. & Teleki, G.) 455–498 (Columbia Univ. Press, 1981).

  39. Sponheimer, M. & Lee-Thorp, J. A. Enamel diagenesis at South African Australopith sites: implications for paleoecological reconstruction with trace elements. Geochim. Cosmochim. Acta 70, 1644–1654 (2006).

    Article  CAS  Google Scholar 

  40. Elias, R. W., Hirao, Y. & Patterson, C. C. The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochim. Cosmochim. Acta 46, 2561–2580 (1982).

    Article  CAS  Google Scholar 

  41. Sillen, A. & Kavanagh, M. Strontium and paleodietary research: a review. Am. J. Phys. Anthropol. 25, 67–90 (1982).

    Article  Google Scholar 

  42. Balter, V. Allometric constraints on Sr/Ca and Ba/Ca partitioning in terrestrial mammalian trophic chains. Oecologia 139, 83–88 (2004).

    Article  PubMed  Google Scholar 

  43. Lazzerini, N. et al. Monthly mobility inferred from isoscapes and laser ablation strontium isotope ratios in caprine tooth enamel. Sci. Rep. 11, 2277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Runia, L. T. Strontium and calcium distribution in plants: effect on palaeodietary studies. J. Archaeol. Sci. 14, 599–608 (1987).

    Article  Google Scholar 

  45. Joannes-Boyau, R. et al. Elemental signatures of Australopithecus africanus teeth reveal seasonal dietary stress. Nature 572, 112–115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guatelli-Steinberg, D., Floyd, B. A., Dean, M. C. & Reid, D. J. Enamel extension rate patterns in modern human teeth: two approaches designed to establish an integrated comparative context for fossil primates. J. Hum. Evol. 63, 475–486 (2012).

    Article  PubMed  Google Scholar 

  47. Lacruz, R. S. Enamel microstructure of the hominid KB 5223 from Kromdraai, South Africa. Am. J. Phys. Anthropol. 132, 175–182 (2007).

  48. Dean, M. C. Retrieving chronological age from dental remains of early fossil hominins to reconstruct human growth in the past. Philos. Trans. R. Soc. B 365, 3397–3410 (2010).

    Article  Google Scholar 

  49. Le Cabec, A., Tang, N. & Tafforeau, P. Accessing developmental information of fossil hominin teeth using new synchrotron microtomography-based visualization techniques of dental surfaces and interfaces. PLoS ONE 10, e0123019 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Balter, V. Raw data. Zenodo https://doi.org/10.5281/zenodo.14497676 (2024).

  51. Balter, V. Resampled data. Zenodo https://doi.org/10.5281/zenodo.14355254 (2024).

  52. Balter, V. Final data. Zenodo https://doi.org/10.5281/zenodo.14363950 (2024).

  53. Balter, V. R scripts. Zenodo https://doi.org/10.5281/zenodo.15497667 (2024).

  54. Balter, V. table_samp. Zenodo https://doi.org/10.5281/zenodo.15496905 (2025).

Download references

Acknowledgements

We thank the Ditsong National Museum of Natural History, Pretoria, South Africa, L. Kgasi and F. Thackeray for prior access to fossil material made use of in this study and the INSU/CNRS MC-ICPMS national facility at ENS-Lyon. We are grateful to S. Copeland for sharing plant and P. robustus 87Sr/86Sr data, F. Chambat, M. le Corre and T. Tacail for helpful discussion during periodogram calculation, isoscape modelling and data reduction, respectively, and S. H. Ambrose and I. M. Shapiro for comments on earlier drafts of this paper. C.D. is supported by the Calleva Foundation, within CHER at the Natural History Museum, London.

Author information

Authors and Affiliations

Authors

Contributions

A.S. led the interpretation of the data and wrote an initial version of the paper. C.D. generated dental chronologies, and V.B. reduced data and generated outputs and figures. All authors reviewed, discussed and commented on the presented results and on the paper.

Corresponding author

Correspondence to Vincent Balter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Clement Bataille and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Tables 1–5 and Discussion.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sillen, A., Dean, C. & Balter, V. Geochemical chronologies in Paranthropus robustus teeth inform habitat and life histories. Nat Ecol Evol 9, 1731–1738 (2025). https://doi.org/10.1038/s41559-025-02798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02798-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing