Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lagged precipitation effects on plant production across terrestrial biomes

Abstract

Precipitation effects on plant carbon uptake extend beyond immediate timeframes, reflecting temporal lags between rainfall and plant growth. Mechanisms and relative importance of such lagged effects are expected to vary across ecosystems. Here we draw on an extensive collections of productivity proxies from long-term ground measurements, satellite observations and model simulations to show that preceding-year precipitation exerts a comparable influence on plant productivity to current-year precipitation. Statistically supported lagged precipitation effects are detected in 13.4%–19.7% of the grids depending on the data source. In these sites, preceding-year precipitation positively controls current-year plant productivity in water-limited areas, while negative effects occur in some wet regions, such as tropical forests. While aridity emerges as the main driver of this spatial variability, machine learning-based spatial attribution also indicates interactions among plant traits, climatic conditions and soil properties. We also show that soil water dynamics, plant phenology and foliar structure might mediate lagged precipitation effects across time. Our findings highlight the role of preceding-year precipitation in global plant productivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of effects of current-year and antecedent precipitation on plant productivity.
Fig. 2: LPEs on plant productivity inferred from ground-based measurements.
Fig. 3: LPEs on plant productivity inferred from satellite observations and model simulations.
Fig. 4: Spatial attribution and temporal mechanisms of LPEs.

Similar content being viewed by others

Data availability

All data used in this study are freely available from the following sources: in situ raw tree-ring-width data are sourced from ITRDB (https://www1.ncdc.noaa.gov/pub/data/paleo/treering/measurements). FLUXNET2015 GPP is available from https://fluxnet.org/data/fluxnet2015-dataset. Grassland ANPP is available via Figshare at https://doi.org/10.6084/m9.figshare.13020695.v1 (ref. 103) and https://doi.org/10.5061/dryad.7sqv9s4vv (ref. 104). MODIS EVI and NDVI are available from https://lpdaac.usgs.gov/products/mod13c2v061/. GOSIF SIF is available from https://data.globalecology.unh.edu/data/GOSIF_v2. CSIF SIF is available from https://doi.org/10.11888/Ecolo.tpdc.271751. Ku VOD is available via Zenodo at https://zenodo.org/records/2575599#.Y5nMg3ZBz9A (ref. 105). Merged-band (C, X, Ku) VOD is available from https://doi.org/10.48436/t74ty-tcx62 (ref. 106). GLASS GPP is available from http://www.glass.umd.edu/Download.html. GOSIF GPP is available from https://data.globalecology.unh.edu/data/GOSIF-GPP_v2. MUSES GPP is available from https://zenodo.org/records/3996814 (ref. 107). MODIS-algorithm GPP is available from https://doi.org/10.1038/nclimate2879. TL-LUE GPP is available via Dryad at https://doi.org/10.5061/dryad.dfn2z352k (ref. 108). PML GPP is available via Figshare at https://doi.org/10.6084/m9.figshare.14185739.v4 (ref. 60). LRF GPP is available from https://doi.org/10.17894/ucph.b2d7ebfb-c69c-4c97-bee7-562edde5ce66. MF-CW GPP is available from https://globalecology.unh.edu/data/MF-CW.html. ERA5-Land data are available from https://doi.org/10.24381/cds.e2161bac. MSWX climate data are available from https://www.gloh2o.org/mswx. MSWEP precipitation is available from https://www.gloh2o.org/mswep. CRU precipitation available from https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.08/data. CPC precipitation is available from https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html. GPCC precipitation is available from https://doi.org/10.5676/DWD_GPCC/FD_M_V2022_050. Aridity index is available via Figshare at https://doi.org/10.6084/m9.figshare.7504448.v5 (ref. 109). GLEAM soil moisture is available from https://www.gleam.eu. Atmospheric CO2 concentration is available from https://gml.noaa.gov/ccgg/trends. Terrestrial water storage is available via Figshare at https://doi.org/10.6084/m9.figshare.7670849 (ref. 110). SoilGrids data are available from https://www.isric.org/explore/soilgrids. Soil phosphorus concentration is available via Figshare at https://doi.org/10.6084/m9.figshare.14241854 (ref. 111). GTOPO30 elevation is available from https://doi.org/10.5066/F7DF6PQS. GIMMS LAI 4 g is available via Zenodo at https://doi.org/10.5281/zenodo.7649107 (ref. 112). Plant species richness is available from https://doi.org/10.7910/DVN/PDNWKL. Maximum root depth is available from https://doi.org/10.1073/pnas.1712381114. Forest age is available from https://doi.org/10.17871/ForestAgeBGI.2021. Tree density is available from https://elischolar.library.yale.edu/yale_fes_data/1/. Biome type is available from https://ecoregions.appspot.com. The field RWI, BAI and related climate data are also available via Zenodo at https://doi.org/10.5281/zenodo.15313896 (ref. 113). Source data are provided with this paper.

Code availability

All data analyses were performed using R (v.4.4.2). The code is available via Zenodo at https://doi.org/10.5281/zenodo.15313896 (ref. 113).

References

  1. Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parton, W. et al. Impact of precipitation dynamics on net ecosystem productivity. Glob. Change Biol. 18, 915–927 (2012).

    Article  Google Scholar 

  4. Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Knapp, A. K., Ciais, P. & Smith, M. D. Reconciling inconsistencies in precipitation–productivity relationships: implications for climate change. New Phytol. 214, 41–47 (2017).

    Article  PubMed  Google Scholar 

  7. Dudney, J. et al. Lagging behind: have we overlooked previous‐year rainfall effects in annual grasslands? J. Ecol. 105, 484–495 (2017).

    Article  Google Scholar 

  8. Peltier, D. M. P., Anderegg, W. R. L., Guo, J. S. & Ogle, K. Contemporary tree growth shows altered climate memory. Ecol. Lett. 25, 2663–2674 (2022).

    Article  PubMed  Google Scholar 

  9. Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbágy, E. & Peters, D. Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos. Trans. R. Soc. B 367, 3135–3144 (2012).

    Article  Google Scholar 

  10. IPCC Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) (IPCC, 2023).

  11. Zhang, W. et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 7, eabf8021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tubiello, F. N., Soussana, J.-F. & Howden, S. M. Crop and pasture response to climate change. Proc. Natl Acad. Sci. USA 104, 19686–19690 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sloat, L. L. et al. Increasing importance of precipitation variability on global livestock grazing lands. Nat. Clim. Change 8, 214–218 (2018).

    Article  Google Scholar 

  14. Reichmann, L. G., Sala, O. E. & Peters, D. P. C. Precipitation legacies in desert grassland primary production occur through previous‐year tiller density. Ecology 94, 435–443 (2013).

    Article  PubMed  Google Scholar 

  15. Sun, J. et al. Positive legacies of severe droughts in the Inner Mongolia grassland. Sci. Adv. 8, eadd6249 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kannenberg, S. A., Schwalm, C. R. & Anderegg, W. R. L. Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecol. Lett. 23, 891–901 (2020).

    Article  PubMed  Google Scholar 

  17. Peltier, D. M. P. & Ogle, K. Still recovering or just remembering? To understand drought legacies, modelling choices matter. J. Ecol. 111, 1170–1173 (2023).

    Article  Google Scholar 

  18. Müller, L. M. & Bahn, M. Drought legacies and ecosystem responses to subsequent drought. Glob. Change Biol. 28, 5086–5103 (2022).

    Article  Google Scholar 

  19. Ogle, K. et al. Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett. 18, 221–235 (2015).

    Article  PubMed  Google Scholar 

  20. Estiarte, M. et al. Few multiyear precipitation–reduction experiments find a shift in the productivity–precipitation relationship. Glob. Change Biol. 22, 2570–2581 (2016).

    Article  Google Scholar 

  21. Bazzaz, F. A., Chiariello, N. R., Coley, P. D. & Pitelka, L. F. Allocating resources to reproduction and defense. BioScience 37, 58–67 (1987).

    Article  Google Scholar 

  22. Villar-Salvador, P., Uscola, M. & Jacobs, D. F. The role of stored carbohydrates and nitrogen in the growth and stress tolerance of planted forest trees. New For. 46, 813–839 (2015).

    Article  Google Scholar 

  23. Sherry, R. A. et al. Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob. Change Biol. 14, 2923–2936 (2008).

    Article  Google Scholar 

  24. He, L., Li, Z.-L., Wang, X., Xie, Y. & Ye, J.-S. Lagged precipitation effect on plant productivity is influenced collectively by climate and edaphic factors in drylands. Sci. Total Environ. 755, 142506 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Peltier, D. M. P., Barber, J. J. & Ogle, K. Quantifying antecedent climatic drivers of tree growth in the southwestern US. J. Ecol. 106, 613–624 (2018).

    Article  CAS  Google Scholar 

  26. Schuur, E. A. G. Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84, 1165–1170 (2003).

    Article  Google Scholar 

  27. Parent, C., Capelli, N., Berger, A., Crèvecoeur, M. & Dat, J. F. An overview of plant responses to soil waterlogging. Plant Stress 2, 20–27 (2008).

    Google Scholar 

  28. Zhang, Y., Chen, X., Geng, S. & Zhang, X. A review of soil waterlogging impacts, mechanisms, and adaptive strategies. Front. Plant Sci. 16, 1545912 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cleveland, C. C. et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan‐tropical analysis. Ecol. Lett. 14, 939–947 (2011).

    Article  PubMed  Google Scholar 

  30. Huete, A. R. et al. Amazon rainforests green‐up with sunlight in dry season. Geophys. Res. Lett. 33, 2005GL025583 (2006).

    Article  Google Scholar 

  31. Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: a global synthesis. Glob. Change Biol. 25, 269–276 (2019).

    Article  Google Scholar 

  33. Zhou, B. et al. A general model for the seasonal to decadal dynamics of leaf area. Glob. Change Biol. 31, e70125 (2025).

    Article  CAS  Google Scholar 

  34. Shen, M., Piao, S., Cong, N., Zhang, G. & Jassens, I. A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).

    Article  Google Scholar 

  35. Grossiord, C. Having the right neighbors: how tree species diversity modulates drought impacts on forests. New Phytol. 228, 42–49 (2020).

    Article  PubMed  Google Scholar 

  36. Noy-Meir, I. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst. 4, 25–51 (1973).

    Article  Google Scholar 

  37. Sumida, A., Watanabe, T. & Miyaura, T. Interannual variability of leaf area index of an evergreen conifer stand was affected by carry-over effects from recent climate conditions. Sci. Rep. 8, 13590 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kolus, H. R. et al. Land carbon models underestimate the severity and duration of drought’s impact on plant productivity. Sci. Rep. 9, 2758 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Klesse, S. et al. A combined tree ring and vegetation model assessment of European forest growth sensitivity to interannual climate variability. Glob. Biogeochem. Cycles 32, 1226–1240 (2018).

    Article  CAS  Google Scholar 

  40. Zhao, S. et al. The International Tree‐Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).

    Article  Google Scholar 

  41. Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).

    Article  Google Scholar 

  42. Fritts, H. C. & Swetnam, T. W. Dendroecology: a tool for evaluating variations in past and present forest environments. Adv. Ecol. Res. 19, 111–188 (1989).

  43. Biondi, F. & Qeadan, F. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree Ring Res. 64, 81–96 (2008).

    Article  Google Scholar 

  44. Gea‐Izquierdo, G. et al. Risky future for Mediterranean forests unless they undergo extreme carbon fertilization. Glob. Change Biol. 23, 2915–2927 (2017).

    Article  Google Scholar 

  45. Tao, W. et al. Daytime warming triggers tree growth decline in the Northern Hemisphere. Glob. Change Biol. 28, 4832–4844 (2022).

    Article  Google Scholar 

  46. Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hou, E. et al. Divergent responses of primary production to increasing precipitation variability in global drylands. Glob. Change Biol. 27, 5225–5237 (2021).

    Article  CAS  Google Scholar 

  48. Sun, Y., Chang, J. & Fang, J. Above- and belowground net-primary productivity: a field-based global database of grasslands. Ecology 104, e3904 (2023).

    Article  PubMed  Google Scholar 

  49. Didan, K. MODIS/Terra Vegetation Indices Monthly L3 Global 0.05 Deg CMG V061 [Dataset] (NASA Land Processes DACC, 2021); https://doi.org/10.5067/MODIS/MOD13C2.061

  50. Pinzon, J. E. et al. Vegetation CollectionGlobal Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981–2022 (ORNL DAAC, 2023); https://doi.org/10.3334/ORNLDAAC/2187

  51. Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).

    Article  Google Scholar 

  52. Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).

    Article  CAS  Google Scholar 

  53. Moesinger, L. et al. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).

    Article  Google Scholar 

  54. Zotta, R.-M. et al. VODCA v2: multi-sensor, multi-frequency vegetation optical depth data for long-term canopy dynamics and biomass monitoring. Earth Syst. Sci. Data 16, 4573–4617 (2024).

    Article  Google Scholar 

  55. Liang, S. et al. The global land surface satellite (GLASS) product suite. Bull. Am. Meteorol. Soc. 102, E323–E337 (2021).

    Article  Google Scholar 

  56. Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens. 11, 2563 (2019).

    Article  Google Scholar 

  57. Sun, R. et al. Estimation of global net primary productivity from 1981 to 2018 with remote sensing data. In IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium 4331–4334 (IEEE, 2020); https://doi.org/10.1109/IGARSS39084.2020.9323555

  58. Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Article  CAS  Google Scholar 

  59. Bi, W. et al. A global 0.05° dataset for gross primary production of sunlit and shaded vegetation canopies from 1992 to 2020. Sci. Data 9, 213 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang, X., Zhang, Y. & Kong, D. Global GPP, ET, Ec, Es and Ei simulated by PML-V2 with AVHRR GIMMS3g LAI at a 0.05 degree resolution over 1982–2014. Figshare https://doi.org/10.6084/M9.figshare.14185739.V4 (2022).

  61. Tagesson, T. et al. A physiology‐based Earth observation model indicates stagnation in the global gross primary production during recent decades. Glob. Change Biol. 27, 836–854 (2021).

    Article  CAS  Google Scholar 

  62. Li, F. et al. Global water use efficiency saturation due to increased vapor pressure deficit. Science 381, 672–677 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  Google Scholar 

  64. Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).

    Article  Google Scholar 

  65. Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).

    Article  Google Scholar 

  66. Beck, H. E. et al. MSWX: global 3-hourly 0.1° bias-corrected meteorological data including near-real-time updates and forecast ensembles. Bull. Am. Meteorol. Soc. 103, E710–E732 (2022).

    Article  Google Scholar 

  67. Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Article  Google Scholar 

  68. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xie, P. et al. A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeorol. 8, 607–626 (2007).

    Article  Google Scholar 

  70. Becker, A. et al. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 5, 71–99 (2013).

    Article  Google Scholar 

  71. Duursma, R. A. Plantecophys—an R package for analysing and modelling leaf gas exchange data. PLoS ONE 10, e0143346 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cule, E. & De Iorio, M. Ridge regression in prediction problems: automatic choice of the ridge parameter. Genet. Epidemiol. 37, 704–714 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hoerl, A. E. & Kennard, R. W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55–67 (1970).

    Article  Google Scholar 

  74. Chen, L. et al. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 10, 777–780 (2020).

    Article  CAS  Google Scholar 

  75. Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).

    Article  Google Scholar 

  76. Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci. Data 9, 409 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wu, X. et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Change Biol. 24, 504–516 (2018).

    Article  Google Scholar 

  78. Jiang, P. et al. Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nat. Commun. 10, 195 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).

  81. Lai, J., Tang, J., Li, T., Zhang, A. & Mao, L. Evaluating the relative importance of predictors in generalized additive models using the gam.hp R package. Plant Divers. 46, 542–546 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Article  Google Scholar 

  83. Trapletti, A. & Hornik, K. tseries: time series analysis and computational finance. R package version 0.10-58 https://doi.org/10.32614/CRAN.package.tseries (1999).

  84. Wu, D. et al. Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences 15, 3421–3437 (2018).

    Article  Google Scholar 

  85. Wang, Y., Xiao, J., Li, X. & Niu, S. Global evidence on the asymmetric response of gross primary productivity to interannual precipitation changes. Sci. Total Environ. 814, 152786 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. McDowell, R. W., Noble, A., Pletnyakov, P. & Haygarth, P. M. A global database of soil plant available phosphorus. Sci. Data 10, 125 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the anthropocene. PLoS ONE 7, e30535 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Besnard, S. et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst. Sci. Data 13, 4881–4896 (2021).

    Article  Google Scholar 

  91. Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Global 30 Arc-Second Elevation (GTOPO30) (EROS USGS, 2017); https://doi.org/10.5066/F7DF6PQS

  93. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  94. Berdugo, M., Gaitán, J. J., Delgado-Baquerizo, M., Crowther, T. W. & Dakos, V. Prevalence and drivers of abrupt vegetation shifts in global drylands. Proc. Natl Acad. Sci. USA 119, e2123393119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wright, M. N. & Ziegler, A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Soft. 77, 1–17 (2017).

    Article  Google Scholar 

  96. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cao, S. et al. Spatiotemporally consistent global dataset of the GIMMS leaf area index (GIMMS LAI4g) from 1982 to 2020. Earth Syst. Sci. Data 15, 4877–4899 (2023).

    Article  Google Scholar 

  98. Humphrey, V. & Gudmundsson, L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth Syst. Sci. Data 11, 1153–1170 (2019).

    Article  Google Scholar 

  99. White, M. A., Thornton, P. E. & Running, S. W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 11, 217–234 (1997).

    Article  CAS  Google Scholar 

  100. Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).

    Article  Google Scholar 

  101. He, L. et al. Non-symmetric responses of leaf onset date to natural warming and cooling in northern ecosystems. PNAS Nexus 2, pgad308 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rosseel, Y. Iavaan: an R package for structural equation modeling. J. Stat. Soft. 48, 1–36 (2012).

  103. Hou, E. et al. The effect of interannual precipitation variability on aboveground net primary production [Dataset]. Figshare https://doi.org/10.6084/m9.figshare.13020695.v1 (2021).

  104. Sun, Y., Chang, J. & Fang, J. Above- and below-ground net primary productivity: a field-based global database of grasslands [Dataset]. Dryad https://doi.org/10.5061/dryad.7sqv9s4vv (2022).

  105. Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive VODCA (1.0) [Dataset]. Zenodo https://doi.org/10.5281/zenodo.2575599 (2019).

  106. Zotta, R.-M. et al. VODCA v2: multi-sensor, multi-frequency vegetation optical depth data for long-term canopy dynamics and biomass monitoring (1.0.0) [Dataset]. TU Wien https://doi.org/10.48436/t74ty-tcx62 (2024).

  107. Sun, R. et al. Global vegetation productivity from 1981 to 2018 estimated from remote sensing data [Data set]. Zenodo https://doi.org/10.5281/zenodo.3996814 (2020).

  108. Bi, W. & Zhou, Y. A global 0.05° dataset for gross primary production of sunlit and shaded vegetation canopies (1992–2020) [Dataset]. Dryad https://doi.org/10.5061/dryad.dfn2z352k (2022).

  109. Zomer, R. J. Global aridity index and potential evapotranspiration (ET0) database: version 3 [Dataset]. Figshare https://doi.org/10.6084/m9.figshare.7504448.v5 (2019).

  110. Humphrey, V. & Gudmundsson, L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century [Dataset]. Figshare https://doi.org/10.6084/m9.figshare.7670849.v3 (2019).

  111. McDowell, R. Global available soil phosphorus database [Dataset]. Figshare https://doi.org/10.6084/m9.figshare.14241854.v3 (2023).

  112. Cao, S. et al. Spatiotemporally consistent global dataset of the GIMMS leaf area index (GIMMS LAI4g) from 1982 to 2020 (V1.2) [Dataset]. Zenodo https://doi.org/10.5281/zenodo.8281930 (2023).

  113. He, L. code for LPE study (version v2). Zenodo https://doi.org/10.5281/zenodo.15313896 (2025).

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China grant no. 41921001. J.W. was funded by the ‘Kezhen and Bingwei’ Young Scientist Programme of IGSNRR. D.M.P.P was supported by NSF-DEB grant no. 2213599. J.X. was supported by the University of New Hampshire via bridge support and the Iola Hubbard Climate Change Endowment.

Author information

Authors and Affiliations

Authors

Contributions

J.W., Z.-L.L. and L.H. designed this study. L.H. performed the analyses and visualization. L.H. and J.W. wrote the first draft of the paper. D.M.P.P., F.R. and P.C. substantially revised the paper with intensive suggestions. All authors discussed the results and contributed to the revisions.

Corresponding authors

Correspondence to Jian Wang or Zhao-Liang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27 and Tables 1 and 2.

Reporting Summary

Peer Review File

Source data

Source Data Figs. 1–4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Wang, J., Peltier, D.M.P. et al. Lagged precipitation effects on plant production across terrestrial biomes. Nat Ecol Evol 9, 1800–1811 (2025). https://doi.org/10.1038/s41559-025-02806-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02806-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing