Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wave succession in the pandemic clone of Vibrio parahaemolyticus driven by gene loss

Abstract

While spontaneous mutation and gene acquisition are well-established drivers of pathogen adaptation, the role of gene loss remains underexplored. Here we investigated the emergence and diversification of the pandemic clone of Vibrio parahaemolyticus through large-scale phylogenomic analysis of 8,684 global isolates. The pandemic clone rapidly acquired multiple marker genes and genomic islands, subsequently diverging into successive sublineages mediating independent waves of cross-country transmission, as also observed in Vibrio cholerae. Wave succession in the last two decades was driven by loss of putrescine utilization (Puu) genes, conferring phenotypic advantages for environmental adaptation (enhanced biofilm formation) and human transmission (increased cell adhesion and intestinal colonization and reduced virulence), consistent with the virulence trade-off hypothesis. We identified Puu-gene loss in several bacterial genera, with effects on biofilm and adhesion replicated in V. cholerae and Escherichia coli, suggesting convergent evolution and universal phenotypic effects. Our results highlight the indispensable role of gene loss in bacterial pathogen adaptation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: From pre-PC to PC.
Fig. 2: Fine-scale population structure and spatiotemporal and population dynamics of the PC.
Fig. 3: Phenotypic effects of gene loss in the Puu-pathway.
Fig. 4: Phenotypes and clinical symptoms of waves-1–3 and wave-4 strains.
Fig. 5: Puu-genes in 36 bacterial species.

Similar content being viewed by others

Data availability

The sequencing data have been deposited in the NCBI SRA or GenBank database under accession numbers PRJNA1117214 and PRJNA1062747. Background information of sequenced isolate is listed in Supplementary Tables 1 and 2. Source data are provided with this paper.

References

  1. Bonneaud, C. & Longdon, B. Emerging pathogen evolution: using evolutionary theory to understand the fate of novel infectious pathogens. EMBO Rep. 21, e51374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Balasubramanian, D., López-Pérez, M., Grant, T. A., Ogbunugafor, C. B. & Almagro-Moreno, S. Molecular mechanisms and drivers of pathogen emergence. Trends Microbiol. 30, 898–911 (2022).

  3. Baker-Austin, C. et al. Vibrio spp. infections. Nat. Rev. Dis. Primers 4, 8 (2018).

    Article  PubMed  Google Scholar 

  4. Hu, D. et al. Origins of the current seventh cholera pandemic. Proc. Natl Acad. Sci. USA 113, E7730–E7739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mutreja, A. et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477, 462–465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Didelot, X. et al. The role of China in the global spread of the current cholera pandemic. PLoS Genet. 11, e1005072 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Weill, F.-X. et al. Genomic history of the seventh pandemic of cholera in Africa. Science 358, 785–789 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Baker-Austin, C., Stockley, L., Rangdale, R. & Martinez-Urtaza, J. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective. Environ. Microbiol. Rep. 2, 7–18 (2010).

    Article  PubMed  Google Scholar 

  9. Yang, C. et al. Recent mixing of Vibrio parahaemolyticus populations. ISME J. 13, 2578–2588 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nair, G. B. et al. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin. Microbiol. Rev. 20, 39–48 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Espejo, R. T., García, K. & Plaza, N. Insight into the origin and evolution of the Vibrio parahaemolyticus pandemic strain. Front. Microbiol. 8, 1397 (2017).

  12. Han, D., Yu, F., Chen, X., Zhang, R. & Li, J. Challenges in Vibrio parahaemolyticus infections caused by the pandemic clone. Future Microbiol. 14, 437–450 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto, C. et al. Pandemic spread of an O3:K6 clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed PCR and toxRS sequence analyses. J. Clin. Microbiol. 38, 578–585 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nasu, H. et al. A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains. J. Clin. Microbiol. 38, 2156–2161 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hurley, C. C., Quirke, A. M., Reen, F. J. & Boyd, E. F. Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genomics 7, 104 (2006).

  16. Boyd, E. F. et al. Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol. 8, 110 (2008).

  17. Cui, Y. et al. Epidemic clones, oceanic gene pools, and eco-LD in the free living marine pathogen vibrio parahaemolyticus. Mol. Biol. Evol. 32, 1396–1410 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Sela, I., Wolf, Y. I. & Koonin, E. V. Theory of prokaryotic genome evolution. Proc. Natl Acad. Sci. USA 113, 11399–11407 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo, H. How big Is big? The effective population size of marine bacteria. Ann. Rev. Mar. Sci. 17, 537–560 (2025).

    Article  PubMed  Google Scholar 

  20. Liu, Z., Hossain, S. S., Moreira, Z. M. & Haney, C. H. Putrescine and its metabolic precursor arginine promote biofilm and c-di-GMP synthesis in Pseudomonas aeruginosa. J. Bacteriol. 204, e0029721 (2022).

    Article  PubMed  Google Scholar 

  21. Kline, K. A., Fälker, S., Dahlberg, S., Normark, S. & Henriques-Normark, B. Bacterial adhesins in host–microbe interactions. Cell Host Microbe 5, 580–592 (2009).

  22. Yang, C. et al. Outbreak dynamics of foodborne pathogen Vibrio parahaemolyticus over a seventeen year period implies hidden reservoirs. Nat. Microbiol. 7, 1221–1229 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Datta, M. S. et al. Rapid methicillin resistance diversification in Staphylococcus epidermidis colonizing human neonates. Nat. Commun. 12, 6062 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iwasaki, W. & Takagi, T. Rapid pathway evolution facilitated by horizontal gene transfers across prokaryotic lineages. PLoS Genet. 5, e1000402 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Domman, D. et al. Integrated view of Vibrio cholerae in the Americas. Science 358, 789–793 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Cui, Y. et al. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc. Natl Acad. Sci. USA 110, 577–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Rabosky, D. L. & Lovette, I. J. Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62, 1866–1875 (2008).

    Article  PubMed  Google Scholar 

  28. Morlon, H., Kemps, B. D., Plotkin, J. B. & Brisson, D. Explosive radiation of a bacterial species group. Evolution 66, 2577–2586 (2012).

    Article  PubMed  Google Scholar 

  29. Markov, P. V. et al. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 21, 361–379 (2023).

  30. Flemming, H. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Wunderlichová, L., Buňková, L., Koutný, M., Jančová, P. & Buňka, F. Formation, degradation, and detoxification of putrescine by foodborne bacteria: a review. Compr. Rev. Food Sci. Food Saf. 13, 1012–1030 (2014).

  32. Krammer, E. M. & Prévost, M. Function and regulation of acid resistance antiporters. J. Membrane Biol. 252, 465–481 (2019).

    Article  CAS  Google Scholar 

  33. Romano, A., Ladero, V., Alvarez, M. A. & Lucas, P. M. Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus. Int. J. Food Microbiol. 175, 14–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Hohmann, A. W., Schmidt, G. & Rowley, D. Intestinal colonization and virulence of Salmonella in mice. Infect. Immun. 22, 763–770 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Y. et al. Isolation, phylogenetic group, drug resistance, biofilm formation, and adherence genes of Escherichia coli from poultry in central China. Poult. Sci. 95, 2895–2901 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Flament-Simon, S. C. et al. Association between kinetics of early biofilm formation and clonal lineage in Escherichia coli. Front. Microbiol. 10, 1183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hogins, J., Xuan, Z., Zimmern, P. E. & Reitzer, L. The distinct transcriptome of virulence-associated phylogenetic group B2 Escherichia coli. Microbiol. Spectr. 11, e0208523 (2023).

    Article  PubMed  Google Scholar 

  38. Nowrouzian, F. L., Wold, A. E. & Adlerberth, I. Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. J. Infect. Dis. 191, 1078–1083 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Grozdanov, L. et al. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J. Bacteriol. 186, 5432–5441 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chattaway, M. A., Schaefer, U., Tewolde, R., Dallman, T. J. & Jenkins, C. Identification of Escherichia coli and Shigella species from whole-genome sequences. J. Clin. Microbiol. 55, 616–623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Viana, D. et al. A single natural nucleotide mutation alters bacterial pathogen host tropism. Nat. Genet. 47, 361–366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arnold, B. J., Huang, I. T. & Hanage, W. P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 20, 206–218 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San Millán, Á. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 19, 347–359 (2021).

    Article  PubMed  Google Scholar 

  44. Albalat, R. & Cañestro, C. Evolution by gene loss. Nat. Rev. Genet. 17, 379–391 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Wolf, Y. I. & Koonin, E. V. Genome reduction as the dominant mode of evolution. BioEssays 35, 829–837 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pallen, M. J. & Wren, B. W. Bacterial pathogenomics. Nature 449, 835–842 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26 (2012).

    Article  CAS  Google Scholar 

  48. Maurelli, A. T., Fernández, R. E., Bloch, C. A., Rode, C. K. & Fasano, A. Black holes and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl Acad. Sci. USA 95, 3943–3948 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maurelli, A. T. Black holes, antivirulence genes, and gene inactivation in the evolution of bacterial pathogens. FEMS Microbiol. Lett. 267, 1–8 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Bliven, K. A. & Maurelli, A. T. Antivirulence genes: insights into pathogen evolution through gene loss. Infect. Immun. 80, 4061–4070 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dufresne, A., Garczarek, L. & Partensky, F. Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol. 6, R14 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036–12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Delcher, A. L., Salzberg, S. L. & Phillippy, A. M. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinformatics https://doi.org/10.1002/0471250953.bi1003s00 (2003).

  58. Page, A. J. et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb. Genom. 2, e000056 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2015).

    Article  PubMed  Google Scholar 

  62. Edwards, D., Duchêne, S., Pope, B. & Holt, K. SNPPar: identifying convergent evolution and other homoplasies from microbial whole-genome alignments. Microb. Genom. 7, 000694 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kozlov, A. M. et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article  Google Scholar 

  65. Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res. 47, 5539–5549 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rambaut, A., Lam, T. T., Carvalho, L. M. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Didelot, X., Croucher, N. J., Bentley, S. D., Harris, S. R. & Wilson, D. J. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 46, e134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Volz, E. M. & Didelot, X. Modeling the growth and decline of pathogen effective population size provides insight into epidemic dynamics and drivers of antimicrobial resistance. Syst. Biol. 67, 719–728 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. van der Graaf-Van Bloois, L., Chen, H., Wagenaar, J. A. & Zomer, A. L. Development of Kaptive databases for Vibrio parahaemolyticus O- and K-antigen genotyping. Microb. Genom. 9, mgen001007 (2023).

    PubMed  PubMed Central  Google Scholar 

  70. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Tonkin-Hill, G. et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 21, 180 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Chimalapati, S., Lafrance, A. E., Chen, L. & Orth, K. Vibrio parahaemolyticus: basic techniques for growth, genetic manipulation, and analysis of virulence factors. Curr. Protoc. Microbiol. 59, e131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sharma, C. M., Darfeuille, F., Plantinga, T. H. & Vogel, J. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev. 21, 2804–2817 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou, H. et al. Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter. Sci. Rep. 6, 20871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Meiborn, K. L. et al. The Vibrio cholerae chitin utilization program. Proc. Natl Acad. Sci. USA 101, 2524–2529 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (no. 2022YFC2304700 to D.F. and no. 2022YFD2101500 to H. Wang), National Natural Science Foundation of China (no. 32270003 and no. 32000008 to C.Y., no. 32170640 and no. 32211550014 to D.F., no. 32250610209 to S.L.S. and no. 82030099 to H. Wang), Youth Innovation Promotion Association, Chinese Academy of Sciences (no. 2022278 to C.Y.), Ministerio de Ciencia e Innovación (Spain) grant PID2021-127107NB-I00 (to J.M.-U.), Generalitat de Catalunya Grant 2021 SGR 00526 (to J.M.-U.), Shanghai Rising-Star Program (no. 23QA1410500 to C.Y.), Shanghai Public Health System Construction Three-Year Action Plan (no. GWVI-11.1-43 to H. Wang), Wuxi Science and Technology Development Fund’s ‘Light of Taihu Lake’ Science and Technology Research Program (Basic Research) (no. K20231033 to C.N. and no. K20231045 to S.G.) and Innovative research team of high-level local universities in Shanghai. We are grateful to the laboratories of Q. Wang, K. Orth and J. He for providing strains and plasmids. We thank L. Pan for valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

C.Y., J.M.-U., H. Wang and D.F. designed, initiated and coordinated the study. J.M.-U., L.X., Y.L., M.J., X.S. and Q.H. contributed to data collection. C.Y., Z.J., J.W. and W.X. performed bioinformatics analysis. H.Q., S.L.S., C.N., S.G., Z.J., H. Wen, Y.Q. and S.L. performed experiments. All authors contributed to interpretation of the data. C.Y. wrote the first draft of the paper and H.Q., S.L.S., Y.Z., Z.Z., Y. Chao, J.M.-U., H. Wang, R.Y., Y. Cui and D.F. reviewed and revised the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chao Yang, Jaime Martinez-Urtaza, Hui Wang or Daniel Falush.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Yann Boucher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Phylogenetic tree of pre-pandemic clone (pre-PC) strains and sequence coverage of virulence-associated loci and PC marker genes and genomic islands.

Heatmap colors to the right indicate BLASTN-based sequence coverage of each loci, gene or island.

Extended Data Fig. 2 Phylogenetic distribution of virulence-associated loci and pandemic clone (PC) marker genes and genomic islands among PC, pre-PC, and non-PC strains.

Virulence-associated loci: tdh, T3SS1, T6SS1, and T6SS2. PC marker genes/genomic islands: toxRS/new, orf8, f237, and VPaI-1 to VPaI-7. Bar colors on the right indicate strain classification (PC, pre-PC, or non-PC).

Extended Data Fig. 3 Tempo-geographical distribution of pandemic clone (PC) strains and putative hypermutators.

a) Temporal distribution of PC strains. b) Geographical distribution of PC strains. Colors in panels a and b indicate strain classifications as shown in the legend at the top. c) Root-to-tip distances (left) and phylogenetic branch lengths (right) of putative hypermutator strains. Putative hypermutators are highlighted in red.

Extended Data Fig. 4 Distribution of homologous recombination events and homoplastic SNP in pandemic clone (PC) strains.

Phylogenetic trees based on non-recombined and non-homoplastic SNPs are shown on the left. In panel a, the top box summarizes the number and classification of recombination events (see legend at the top), while the bottom box displays their distribution across strains/nodes, represented by red bars. In panel b, bar colors indicate the status of SNPs or gaps, as defined in the legend at the bottom.

Extended Data Fig. 5 Maximum likelihood (ML) phylogeny and fastBAPS hierarchical clustering of representative pandemic clone (PC) strains.

The branch colors of the ML tree on the left indicate the four waves defined in this study. The blue bars on the right display the fastBAPS hierarchical clustering results of PC strains.

Extended Data Fig. 6 Phylogenetic distribution of pandemic clone (PC) marker genes, virulence-associated loci, antimicrobial resistance genes, and other accessory genes.

Branch colors in the ML tree (panel a) indicate the four waves defined in this study. Blue and white bars on the right denote the presence or absence of each locus/gene/island. In panel b, the bar colors on the right represent strain classification (four waves). Wave-specific variations are highlighted.

Extended Data Fig. 7 Global transmission events of the pandemic clone.

a) Summary of global transmission events. Dashed lines represent transient transmission not leading to local colonization. Solid lines represent transmissions resulting in local colonization (TC). The colors indicate different waves. Pie charts indicate the composition of waves of countries. The size of circles scale with the number of representative strains. b) Inferred transmission events (T1-T67) of different waves. The branch colors indicate the geographical regions of strains. Specific transmission events are labeled on the dated phylogenetic tree. Map in a adapted from OpenStreetMap under a Creative Commons license CC BY-SA 2.0.

Extended Data Fig. 8 Phylogenetic trees based on core-genome SNPs and distribution of Puu-genes in 10 bacterial species.

The bar colors on the right side of the tree indicate the presence, absence, or pseudogenization of Puu-genes, as shown in the legend. Double slashes indicate artificially shortened branches.

Extended Data Table 1 Wave-4-specific genomic variations
Extended Data Table 2 Homolog genes of Puu-genes in 36 bacterial species

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Reporting Summary

Peer Review File

Supplementary Tables 3–7

Supplementary Tables 3–7.

Source data

Source Data Fig. 1

Strain category and associated metadata.

Source Data Fig. 2

Strain and associated metadata.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Qiu, H., Svensson, S.L. et al. Wave succession in the pandemic clone of Vibrio parahaemolyticus driven by gene loss. Nat Ecol Evol (2025). https://doi.org/10.1038/s41559-025-02827-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-025-02827-z

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology