Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meta-analysis shows that planting nitrogen-fixing species increases soil organic carbon stock

Abstract

Nitrogen (N)-fixing species are widely used in forestation and agriculture. The effects of planting N-fixing species on soil organic carbon (SOC) stock, however, remain uncertain, limiting policy development and their application towards a possible climate change mitigation strategy. Here we conduct a global meta-analysis of 385 datapoints from 136 studies comparing SOC stock with planting N-fixing versus non-N-fixing species. Planting N-fixing species increases SOC stock by 16% compared with non-N-fixing species. This SOC increase is closely accompanied by soil N increases, with an average accumulation of 7.8 g of SOC per gram of soil N increase. Climate mediates SOC responses, with greater SOC sequestration observed in drier and warmer regions, particularly in the tropics. We estimate that an additional increase of 0.29–0.75 PgC yr−1 in global SOC stock could be achieved by adopting N-fixing species for forestation, agriculture and regeneration of marginal lands, highlighting their potential for climate change mitigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of the selected studies testing the effects of planting N-fixing species on SOC stock in this meta-analysis.
Fig. 2: Effects of planting N-fixing species on SOC stock and the key predictors influencing these effects.
Fig. 3: Planting strategies mediate the effects of N-fixing species on SOC stock.
Fig. 4: Global maps predicting absolute changes in soil organic SOC stock (MgC ha−1) by planting N-fixing species.

Similar content being viewed by others

Data availability

The data used in the meta-analysis are available via figshare at https://doi.org/10.6084/m9.figshare.25458238 (ref. 194). Global maps of planted forests and cropland were obtained from SDPT v.1.0 (https://www.wri.org/research/spatial-database-planted-trees-sdpt-version-10) and GLAD (https://glad.umd.edu/dataset/croplands), respectively. Global maps of SOC and soil N stocks at 0–30 cm were obtained from ISRIC Data Hub (https://data.isric.org). Global maps of MAT and MAP were obtained from WorldClim v.2 (https://worldclim.org). Source data are provided with this paper.

Code availability

The code used in this study is available via figshare at https://doi.org/10.6084/m9.figshare.25458238 (ref. 194).

References

  1. Hulvey, K. B. et al. Benefits of tree mixes in carbon plantings. Nat. Clim. Change 3, 869–874 (2013).

    Article  CAS  Google Scholar 

  2. Zhao, J. et al. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nat. Commun. 13, 4926 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Reed, S. C., Cleveland, C. C. & Townsend, A. R. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu. Rev. Ecol. Evol. Syst. 42, 489–512 (2011).

    Article  Google Scholar 

  4. Levy-Varon, J. H. et al. Tropical carbon sink accelerated by symbiotic dinitrogen fixation. Nat. Commun. 10, 5637 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Resh, S. C., Binkley, D. & Parrotta, J. A. Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5, 217–231 (2002).

    Article  CAS  Google Scholar 

  6. Forrester, D. I., Pares, A., O’Hara, C., Khanna, P. K. & Bauhus, J. Soil organic carbon is increased in mixed-species plantations of Eucalyptus and nitrogen-fixing. Acacia Ecosyst. 16, 123–132 (2013).

    Article  CAS  Google Scholar 

  7. Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).

    Article  PubMed  CAS  Google Scholar 

  8. Crews, T. E. & Peoples, M. B. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 102, 279–297 (2004).

    Article  Google Scholar 

  9. Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B 368, 20130116 (2013).

    Article  Google Scholar 

  10. Niu, S., Song, L., Wang, J., Luo, Y. & Yu, G. Dynamic carbon–nitrogen coupling under global change. Sci. China Life Sci. 66, 771–782 (2023).

    Article  PubMed  CAS  Google Scholar 

  11. Wang, Y. P., Law, R. M. & Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282 (2010).

    Article  CAS  Google Scholar 

  12. Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. Gama-Rodrigues, E. F. et al. Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil. Environ. Manag. 45, 274–283 (2010).

    Article  Google Scholar 

  14. Mao, R. et al. Soil microbiological and chemical effects of a nitrogen-fixing shrub in poplar plantations in semi-arid region of Northeast China. Eur. J. Soil Biol. 46, 325–329 (2010).

    Article  Google Scholar 

  15. Wang, Q., Wang, S. & Zhang, J. Assessing the effects of vegetation types on carbon storage fifteen years after reforestation on a Chinese fir site. For. Ecol. Manag. 258, 1437–1441 (2009).

    Article  Google Scholar 

  16. Parenti, A., Zegada-Lizarazu, W., Pagani, E. & Monti, A. Soil organic carbon dynamics in multipurpose cropping systems. Ind. Crops Prod. 187, 115315 (2022).

    Article  CAS  Google Scholar 

  17. Wolf, A. A., Funk, J. L. & Menge, D. N. L. The symbionts made me do it: legumes are not hardwired for high nitrogen concentrations but incorporate more nitrogen when inoculated. New Phytol. 213, 690–699 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Li, Q., Zhou, D., Denton, M. D. & Cong, S. Alfalfa monocultures promote soil organic carbon accumulation to a greater extent than perennial grass monocultures or grass–Alfalfa mixtures. Ecol. Eng. 131, 53–62 (2019).

    Article  Google Scholar 

  19. Thilakarathna, M. S., McElroy, M. S., Chapagain, T., Papadopoulos, Y. A. & Raizada, M. N. Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review. Agron. Sustain. Dev. 36, 58 (2016).

    Article  Google Scholar 

  20. Wang, J. et al. Interplanting leguminous shrubs boosts the trophic interactions of soil micro-food web in a karst grassland. Soil Biol. Biochem. 188, 109224 (2024).

    Article  CAS  Google Scholar 

  21. Ye, X. et al. Tree species richness and N-fixing tree species enhance the chemical stability of soil organic carbon in subtropical plantations. Soil Biol. Biochem. 174, 108828 (2022).

    Article  CAS  Google Scholar 

  22. Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).

    Article  CAS  Google Scholar 

  23. Liu, M. et al. C:N stoichiometry of stable and labile organic compounds determine priming patterns. Geoderma 362, 114122 (2020).

    Article  CAS  Google Scholar 

  24. Ball, K. R. et al. Soil organic carbon and nitrogen pools are increased by mixed grass and legume cover crops in vineyard agroecosystems: detecting short-term management effects using infrared spectroscopy. Geoderma 379, 114619 (2020).

    Article  CAS  Google Scholar 

  25. Menge, D. N. L., Wolf, A. A. & Funk, J. L. Diversity of nitrogen fixation strategies in Mediterranean legumes. Nat. Plants 1, 15064 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. Forrester, D. I., Bauhus, J., Cowie, A. L. & Vanclay, J. K. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For. Ecol. Manag. 233, 211–230 (2006).

    Article  Google Scholar 

  27. Michaletz, S. T., Cheng, D., Kerkhoff, A. J. & Enquist, B. J. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014).

    Article  PubMed  CAS  Google Scholar 

  28. Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

    Article  PubMed  CAS  Google Scholar 

  29. Binkley, D. in Tree Species Effects on Soils: Implications for Global Change (eds Binkley, D. & Menyailo, O.) 155–164 (Springer, 2005).

  30. McGroddy, M. E., Daufresne, T. & Hedin, L. O. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85, 2390–2401 (2004).

    Article  Google Scholar 

  31. Bytnerowicz, T. A., Akana, P. R., Griffin, K. L. & Menge, D. N. L. Temperature sensitivity of woody nitrogen fixation across species and growing temperatures. Nat. Plants 8, 209–216 (2022).

    Article  PubMed  Google Scholar 

  32. Cheng, Y., Wang, J., Wang, S., Zhang, J. & Cai, Z. Effects of soil moisture on gross N transformations and N2O emission in acid subtropical forest soils. Biol. Fertil. Soils 50, 1099–1108 (2014).

    Article  CAS  Google Scholar 

  33. Dijkstra, F. A. & Cheng, W. Increased soil moisture content increases plant N uptake and the abundance of 15N in plant biomass. Plant Soil 302, 263–271 (2008).

    Article  CAS  Google Scholar 

  34. Campo, J. & Merino, A. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems. Glob. Change Biol. 22, 1942–1956 (2016).

    Article  Google Scholar 

  35. Balting, D. F., AghaKouchak, A., Lohmann, G. & Ionita, M. Northern Hemisphere drought risk in a warming climate. npj Clim. Atmos. Sci. 4, 61 (2021).

    Article  Google Scholar 

  36. Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).

    Article  Google Scholar 

  38. Berhongaray, G., Cotrufo, F. M., Janssens, I. A. & Ceulemans, R. Below-ground carbon inputs contribute more than above-ground inputs to soil carbon accrual in a bioenergy poplar plantation. Plant Soil 434, 363–378 (2019).

    Article  CAS  Google Scholar 

  39. Zhou, X., Wu, H., Koetz, E., Xu, Z. & Chen, C. Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment. Appl. Soil Ecol. 53, 49–55 (2012).

    Article  Google Scholar 

  40. Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).

    Article  CAS  Google Scholar 

  41. Zomer, R. J., Bossio, D. A., Sommer, R. & Verchot, L. V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7, 15554 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shi, L., Feng, W., Xu, J. & Kuzyakov, Y. Agroforestry systems: meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad. Dev. 29, 3886–3897 (2018).

    Article  Google Scholar 

  43. Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article  PubMed  CAS  Google Scholar 

  44. Friedlingstein, P. et al. Global carbon budget 2024. Earth Syst. Sci. Data 17, 965–1039 (2025).

    Article  Google Scholar 

  45. Parazoo, N. C. et al. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. Glob. Change Biol. 20, 3103–3121 (2014).

    Article  Google Scholar 

  46. Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    Article  PubMed  Google Scholar 

  47. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).

    Article  Google Scholar 

  48. Liao, W., Menge, D. N. L., Lichstein, J. W. & Ángeles-Pérez, G. Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America. Glob. Change Biol. 23, 4777–4787 (2017).

    Article  Google Scholar 

  49. Global Forest Resources Assessment 2015 (FAO, 2015).

  50. Ferreira, G. W. D. & Aubrey, D. P. A functional trait framework for integrating nitrogen-fixing cover crops into short-rotation woody crop systems. GCB Bioenergy 15, 663–679 (2023).

    Article  CAS  Google Scholar 

  51. Dynarski, K. A., Pett-Ridge, J. C. & Perakis, S. S. Decadal-scale decoupling of soil phosphorus and molybdenum cycles by temperate nitrogen-fixing trees. Biogeochemistry 149, 355–371 (2020).

    Article  CAS  Google Scholar 

  52. Li, D., Niu, S. & Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol. 195, 172–181 (2012).

    Article  PubMed  CAS  Google Scholar 

  53. Feng, J. & Zhu, B. A global meta-analysis of soil respiration and its components in response to phosphorus addition. Soil Biol. Biochem. 135, 38–47 (2019).

    Article  CAS  Google Scholar 

  54. Romero-Olivares, A. L., Allison, S. D. & Treseder, K. K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 107, 32–40 (2017).

    Article  CAS  Google Scholar 

  55. An, R. et al. Analysis of bacterial community structure and diversity characteristics of mixed forest of Robinia pseudoacacia and Ailanthus altissima and there pure forest in the Yellow River Delta. Acta Ecol. Sin. 39, 7960–7967 (2019).

    CAS  Google Scholar 

  56. Andy, O. N. Smallholder agriculture land use impact on soil organic carbon stock in Federal Capital Territory of Nigeria. J. Agric. Environ. Int. Dev. 112, 109–119 (2018).

    Google Scholar 

  57. Arshad, M. A., Soon, Y. K. & Ripmeester, J. A. Quality of soil organic matter and C storage as influenced by cropping systems in northwestern Alberta, Canada. Nutr. Cycl. Agroecosyst. 89, 71–79 (2011).

    Article  CAS  Google Scholar 

  58. Aschi, A. et al. Introduction of faba bean in crop rotation: impacts on soil chemical and biological characteristics. Appl. Soil Ecol. 120, 219–228 (2017).

    Article  Google Scholar 

  59. Balota, E. L. & Chaves, J. C. Enzymatic activity and mineralization of carbon and nitrogen in soil cultivated with coffee and green manures. Rev. Bras. Cienc. Solo 34, 1573–1583 (2010).

    Article  Google Scholar 

  60. Balota, E. L., Colozzi, A., Andrade, D. S. & Dick, R. P. Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Tillage Res. 77, 137–145 (2004).

    Article  Google Scholar 

  61. Beedy, T. L., Snapp, S. S., Akinnifesi, F. K. & Sileshi, G. W. Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agric. Ecosyst. Environ. 138, 139–146 (2010).

    Article  Google Scholar 

  62. Benintende, S. M., Benintende, M. C., Sterren, M. A. & De Battista, J. J. Soil microbiological indicators of soil quality in four rice rotations systems. Ecol. Indic. 8, 704–708 (2008).

    Article  Google Scholar 

  63. Bernhard-Reversat, F. Soil nitrogen mineralization under a Eucalyptus plantation and a natural Acacia forest in Senegal. For. Ecol. Manag. 23, 233–244 (1988).

    Article  Google Scholar 

  64. Binkley, D., Sollins, P., Bell, R., Sachs, D. & Myrold, D. Biogeochemistry of adjacent conifer and alder–conifer stands. Ecology 73, 2022–2033 (1992).

    Article  CAS  Google Scholar 

  65. Borase, D. N. et al. Long-term impact of grain legumes and nutrient management practices on soil microbial activity and biochemical properties. Arch. Agron. Soil Sci. 67, 2015–2032 (2021).

    Article  CAS  Google Scholar 

  66. Broersma, K., Juma, N. G. & Robertson, J. A. Net nitrogen mineralization from a Gray Luvisol under diverse cropping systems in the Peace River region of Alberta. Can. J. Soil Sci. 76, 117–123 (1996).

    Article  Google Scholar 

  67. Cao, B. & Wu, L. Studies on soil enzyme activity and soil nutrient content of mixed stands with Robinia pseudoacacia and Frascinus velutina in coastal saline soil. J. Soil Water Conserv. 22, 128–133 (2008).

    Google Scholar 

  68. Casals, P., Romero, J., Rusch, G. M. & Ibrahim, M. Soil organic C and nutrient contents under trees with different functional characteristics in seasonally dry tropical silvopastures. Plant Soil 374, 643–659 (2014).

    Article  CAS  Google Scholar 

  69. Chen, J., Shen, W., Xu, H., Li, Y. & Luo, T. The composition of nitrogen-fixing microorganisms correlates with soil nitrogen content during reforestation: a comparison between legume and non-legume plantations. Front. Microbiol. 10, 508 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen, X., Liu, Q. & Zhang, G. Effects of different crop rotation modes on soil fertility and rice yield in Taihu Region. Jiangsu J. Agric. Sci. 37, 874–883 (2021).

    Google Scholar 

  71. Collins, H. P., Rasmussen, P. E. & Douglas, C. L. Jr Crop rotation and residue management effects on soil carbon and microbial dynamics. Soil Sci. Soc. Am. J. 56, 783–788 (1992).

    Article  Google Scholar 

  72. Conceicao, P. C., Dieckow, J. & Bayer, C. Combined role of no-tillage and cropping systems in soil carbon stocks and stabilization. Soil Tillage Res. 129, 40–47 (2013).

    Article  Google Scholar 

  73. Conrad, K. A., Dalal, R. C., Dalzell, S. A., Allen, D. E. & Menzies, N. W. The sequestration and turnover of soil organic carbon in subtropical leucaena-grass pastures. Agric. Ecosyst. Environ. 248, 38–47 (2017).

    Article  CAS  Google Scholar 

  74. Dad, J. M., Dand, S. A. & Pala, N. A. The effect of bi-culture cover crops on soil quality, carbon sequestration, and growth characteristics in apple orchards of North Western Himalayas. Agrofor. Syst. 95, 1745–1758 (2021).

    Article  Google Scholar 

  75. Dai, H., Hu, X., Cao, M., Yang, M. & Wang, J. Effects of intercropping with leguminous crops on tomato yield, soil nutrients and enzyme activity. Acta Pedol. Sin. 52, 911–918 (2015).

    CAS  Google Scholar 

  76. Deng, L. et al. Soil physical and chemical properties of six fast-growing tree species plantations after afforestation for six years. Guangxi For. Sci. 48, 371–376 (2019).

    Google Scholar 

  77. Deng, S. & Tabatabai, M. A. Effect of cropping systems on nitrogen mineralization in soils. Biol. Fertil. Soils 31, 211–218 (2000).

    Article  CAS  Google Scholar 

  78. Dou, X., Li, F., Cheng, X. & Zhu, P. Soil organic carbon and nitrogen dynamics induced by continuous maize cropping compared to maize–soya bean rotation. Eur. J. Soil Sci. 69, 535–544 (2018).

    Article  CAS  Google Scholar 

  79. Feng, H. et al. Soil quality indicators as influenced by 5-year diversified and monoculture cropping systems. J. Agric. Sci. 158, 594–605 (2020).

    Article  CAS  Google Scholar 

  80. Gao, D. et al. Ecological stoichiometry characteristics of soil and leaves during the recovery process of typical vegetation on the Loess Plateau. Acta Ecol. Sin. 39, 3622–3630 (2019).

    CAS  Google Scholar 

  81. Garcia-Montiel, D. C. & Binkley, D. Effect of Eucalyptus saligna and Albizia falcataria on soil processes and nitrogen supply in Hawaii. Oecologia 113, 547–556 (1998).

    Article  PubMed  CAS  Google Scholar 

  82. Gei, M. & Powers, J. S. Do legumes and non-legumes tree species affect soil properties in unmanaged forests and plantations in Costa Rican dry forests? Soil Biol. Biochem. 57, 264–272 (2013).

    Article  CAS  Google Scholar 

  83. Ghimire, R., Bista, P. & Machado, S. Long-term management effects and temperature sensitivity of soil organic carbon in grassland and agricultural soils. Sci. Rep. 9, 12151 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ghosh, P. K. et al. Increasing soil organic carbon through crop diversification in cereal–cereal rotations of Indo-Gangetic plain. Proc. Indian Natl Sci. Acad. B 89, 429–440 (2019).

    Google Scholar 

  85. Gijsman, A. J., Oberson, A., Friesen, D. K., Sanz, J. I. & Thomas, R. J. Nutrient cycling through microbial biomass under rice–pasture rotations replacing native savanna. Soil Biol. Biochem. 29, 1433–1441 (1997).

    Article  CAS  Google Scholar 

  86. Gitari, H. I. et al. Potato–legume intercropping on a sloping terrain and its effects on soil physico-chemical properties. Plant Soil 438, 447–460 (2019).

    Article  CAS  Google Scholar 

  87. Gregorich, E. G., Drury, C. F. & Baldock, J. A. Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Can. J. Soil Sci. 81, 21–31 (2001).

    Article  CAS  Google Scholar 

  88. Guan, A., Zhang, Y., Liu, Y., Luo, S. & Wang, J. Effects of reduced nitrogen application and sugarcane-soybean intercropping on carbon balance in sugarcane fields. Chin. J. Eco-Agric. 24, 478–488 (2016).

    CAS  Google Scholar 

  89. Gurlevik, N. & Karatepe, Y. Long-term effects of afforestation on soil characteristics and net nitrogen mineralization in sandy soils. Austrian J. For. Sci. 133, 187–202 (2016).

    Google Scholar 

  90. Han, J., Yao, Q., Hong, C. & Lin, W. Study on the growth and ecological benefit of mixed stand of Eucalyptus grandis × E. urophylla and Acacia mangium × A. auriculiformis. Eucalypt. Sci. Technol. 72, 15–18 (2008).

    Google Scholar 

  91. He, B., Jia, L., Jin, D. & Qin, W. Studies on soil fertility change in Acacia mangium plantation in Nanning, Guangxi. Sci. Silvae Sin. 43, 10–16 (2007).

    CAS  Google Scholar 

  92. He, H. et al. The structure and diversity of nitrogen functional groups from different cropping systems in Yellow River Delta. Microorganisms 8, 424 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Higashi, T. et al. Tillage and cover crop species affect soil organic carbon in Andosol, Kanto, Japan. Soil Tillage Res. 138, 64–72 (2014).

    Article  Google Scholar 

  94. Hoogmoed, M., Cunningham, S. C., Baker, P., Beringer, J. & Cavagnaro, T. R. N-fixing trees in restoration plantings: effects on nitrogen supply and soil microbial communities. Soil Biol. Biochem. 77, 203–212 (2014).

    Article  CAS  Google Scholar 

  95. Hoogmoed, M., Cunningham, S. C., Baker, P. J., Beringer, J. & Cavagnaro, T. R. Is there more soil carbon under nitrogen-fixing trees than under non-nitrogen-fixing trees in mixed-species restoration plantings? Agric. Ecosyst. Environ. 188, 80–84 (2014).

    Article  Google Scholar 

  96. Hu, B. et al. Comparison of nitrogen nutrition and soil carbon status of afforested stands established in degraded soil of the Loess Plateau, China. For. Ecol. Manag. 389, 46–58 (2017).

    Article  Google Scholar 

  97. Huang, X. et al. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China. Soil Biol. Biochem. 73, 42–48 (2014).

    Article  CAS  Google Scholar 

  98. Huang, X. et al. Microbial community and associated enzymes activity influence soil carbon chemical composition in Eucalyptus urophylla plantation with mixing N2-fixing species in subtropical China. Plant Soil 414, 199–212 (2017).

    Article  CAS  Google Scholar 

  99. Jeddi, K., Cortina, J. & Chaieb, M. Acacia salicina, Pinus halepensis and Eucalyptus occidentalis improve soil surface conditions in arid southern Tunisia. J. Arid. Environ. 73, 1005–1013 (2009).

    Article  Google Scholar 

  100. Jia, B., Jia, L., Zhang, Y., Mou, X. & Li, X. Leguminous Caragana korshinskii evidently enhances microbial necromass carbon accumulation in dryland soils. Catena 215, 106342 (2022).

    Article  CAS  Google Scholar 

  101. Jing, Y. et al. Effects of N-fixing tree species (Alnus sibirica) on amino sugars in soil aggregates of Larix kaempferi plantation in eastern Liaoning Province, China. Chin. J. Appl. Ecol. 29, 1753–1758 (2018).

    Google Scholar 

  102. Johnson, D. W. Soil properties beneath ceanothus and pine stands in the eastern Sierra Nevada. Soil Sci. Soc. Am. J. 59, 918–924 (1995).

    Article  CAS  Google Scholar 

  103. Juhi et al. Crop yields and soil organic matter pools in zero-till direct-seeded rice-based cropping systems as influenced by fertigation levels in the Indo-Gangetic plains in India. Carbon Manag. 13, 78–89 (2022).

    Google Scholar 

  104. Kaonga, M. L. & Bayliss-Smith, T. P. Carbon pools in tree biomass and the soil in improved fallows in eastern Zambia. Agrofor. Syst. 76, 37–51 (2009).

    Article  Google Scholar 

  105. Kaye, J. P., Binkley, D., Zou, X. & Parrotta, J. A. Non-labile soil 15nitrogen retention beneath three tree species in a tropical plantation. Soil Sci. Soc. Am. J. 66, 612–619 (2002).

    Article  CAS  Google Scholar 

  106. Kaye, J. P., Resh, S. C., Kaye, M. W. & Chimner, R. A. Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees. Ecology 81, 3267–3273 (2000).

    Article  Google Scholar 

  107. Kumar, M., Kundu, D. K., Ghorai, A. K., Mitra, S. & Singh, S. R. Carbon and nitrogen mineralization kinetics as influenced by diversified cropping systems and residue incorporation in inceptisols of eastern Indo-Gangetic plain. Soil Tillage Res. 178, 108–117 (2018).

    Article  Google Scholar 

  108. Li, H. et al. Changes in carbon, nutrients and stoichiometric relations under different soil depths, plant tissues and ages in black locust plantations. Acta Physiol. Plant. 35, 2951–2964 (2013).

    Article  CAS  Google Scholar 

  109. Li, J., Jiao, S., Gao, R. & Bardgett, R. D. Differential effects of legume species on the recovery of soil microbial communities, and carbon and nitrogen contents, in abandoned fields of the Loess Plateau, China. Environ. Manag. 50, 1193–1203 (2012).

    Article  Google Scholar 

  110. Li, Q. et al. Changes in soil organic carbon and total nitrogen stocks along a chronosequence of Caragana intermedia plantations in alpine sandy land. Ecol. Eng. 133, 53–59 (2019).

    Article  CAS  Google Scholar 

  111. Li, Z., Wen, H. & Yu, Z. The impact of human activities on the soil nitrogen mineralization in artificial forests. Chin. J. Bot. 12, 142–148 (1995).

    Google Scholar 

  112. Liu, C., Nie, Y., Zhang, Y., Tang, J. & Siddique, K. H. M. Introduction of a leguminous shrub to a rubber plantation changed the soil carbon and nitrogen fractions and ameliorated soil environments. Sci. Rep. 8, 17324 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Liu, L. et al. Effect of monospecific and mixed Cunninghamia lanceolata plantations on microbial community and two functional genes involved in nitrogen cycling. Plant Soil 327, 413–428 (2010).

    Article  CAS  Google Scholar 

  114. Lopez-Bellido, L., Lopez-Garrido, F. J., Fuentes, M., Castillo, J. E. & Fernandez, E. J. Influence of tillage, crop rotation and nitrogen fertilization on soil organic matter and nitrogen under rain-fed Mediterranean conditions. Soil Tillage Res. 43, 277–293 (1997).

    Article  Google Scholar 

  115. Ma, H. et al. Intercropping improves soil ecosystem multifunctionality through enhanced available nutrients but depends on regional factors. Plant Soil 480, 71–84 (2022).

    Article  CAS  Google Scholar 

  116. Ma, J. & Li, K. Effects of plantation on soil nutrient and evaluation in Yuanmou dry-hot valley. For. Res. 19, 467–471 (2006).

    Google Scholar 

  117. Macedo, M. O. et al. Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. For. Ecol. Manag. 255, 1516–1524 (2008).

    Article  Google Scholar 

  118. Matusso, J. M. M., Mugwe, J. N. & Mucheru-Muna, M. Effects of different maize (Zea mays L.)–soybean (Glycine max (L.) Merrill) intercropping patterns on soil mineral-N, N-uptake and soil properties. Afr. J. Agric. Res. 9, 42–55 (2014).

    Article  Google Scholar 

  119. McDaniel, M. D. & Grandy, A. S. Soil microbial biomass and function are altered by 12 years of crop rotation. Soil 2, 583–599 (2016).

    Article  CAS  Google Scholar 

  120. McDaniel, M. D., Grandy, A. S., Tiemann, L. K. & Weintraub, M. N. Crop rotation complexity regulates the decomposition of high and low quality residues. Soil Biol. Biochem. 78, 243–254 (2014).

    Article  CAS  Google Scholar 

  121. Mo, Q. et al. Reforestation in southern China: revisiting soil N mineralization and nitrification after 8 years restoration. Sci. Rep. 6, 19770 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Montagnini, F. & Sancho, F. Net nitrogen mineralization in soils under six indigenous tree species, an abandoned pasture and a secondary forest in the Atlantic lowlands of Costa Rica. Plant Soil 162, 117–124 (1994).

    Article  CAS  Google Scholar 

  123. Nath, C. P. et al. Including grain legume in rice–wheat cropping system improves soil organic carbon pools over time. Ecol. Eng. 129, 144–153 (2019).

    Article  Google Scholar 

  124. Novara, A. et al. Cover crop impact on soil organic carbon, nitrogen dynamics and microbial diversity in a Mediterranean semiarid vineyard. Sustainability 12, 3256 (2020).

    Article  CAS  Google Scholar 

  125. Omay, A. B., Rice, C. W., Maddux, L. D. & Gordon, W. B. Changes in soil microbial and chemical properties under long-term crop rotation and fertilization. Soil Sci. Soc. Am. J. 61, 1672–1678 (1997).

    Article  CAS  Google Scholar 

  126. Pereira, E. L., Santos, S. A. P., Arrobas, M. & Patricio, M. S. Microbial biomass and N mineralization in mixed plantations of broadleaves and nitrogen-fixing species. For. Syst. 20, 516–524 (2011).

    Article  Google Scholar 

  127. Qiu, L., Zhang, X., Cheng, J. & Yin, X. Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China. Plant Soil 332, 207–217 (2010).

    Article  CAS  Google Scholar 

  128. Radrizzani, A., Shelton, H. M., Dalzell, S. A. & Kirchhof, G. Soil organic carbon and total nitrogen under Leucaena leucocephala pastures in Queensland. Crop Pasture Sci. 62, 337–345 (2011).

    Article  CAS  Google Scholar 

  129. Regehr, A., Oelbermann, M., Videla, C. & Echarte, L. Gross nitrogen mineralization and immobilization in temperate maize–soybean intercrops. Plant Soil 391, 353–365 (2015).

    Article  CAS  Google Scholar 

  130. Robles, M. D. & Burke, I. C. Legume, grass, and conservation reserve program effects on soil organic matter recovery. Ecol. Appl. 7, 345–357 (1997).

    Article  Google Scholar 

  131. Rothe, A., Cromack, K., Resh, S. C., Makineci, E. & Son, Y. Soil carbon and nitrogen changes under Douglas-fir with and without red alder. Soil Sci. Soc. Am. J. 66, 1988–1995 (2002).

    Article  CAS  Google Scholar 

  132. Rui, Y. et al. Persistent soil carbon enhanced in mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proc. Natl Acad. Sci. USA 119, e2118931119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Russell, A. E., Raich, J. W., Valverde-Barrantes, O. J. & Fisher, R. F. Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Sci. Soc. Am. J. 71, 1389–1397 (2007).

    Article  CAS  Google Scholar 

  134. Sainju, U. M. et al. Cover crop effect on soil carbon fractions under conservation tillage cotton. Soil Tillage Res. 96, 205–218 (2007).

    Article  Google Scholar 

  135. Santos, E. R. S. et al. Particulate soil organic matter in bahiagrass–rhizoma peanut mixtures and their monocultures. Soil Sci. Soc. Am. J. 83, 658–665 (2019).

    Article  CAS  Google Scholar 

  136. Scalise, A. et al. Legume–barley intercropping stimulates soil N supply and crop yield in the succeeding durum wheat in a rotation under rainfed conditions. Soil Biol. Biochem. 89, 150–161 (2015).

    Article  CAS  Google Scholar 

  137. Singh, A. N., Raghubanshi, A. S. & Singh, J. S. Impact of native tree plantations on mine spoil in a dry tropical environment. For. Ecol. Manag. 187, 49–60 (2004).

    Article  Google Scholar 

  138. Tao, J. et al. Impact of intercropping and arbuscular mycorrhizal fungi on soil fertility and corn yield in a newly cultivated mountain land. Acta Agr. Zhejiang. 32, 115–123 (2020).

    Google Scholar 

  139. Tayir, M. et al. Distinct leaf functional traits of Tamarix chinensis at different habitats in the hinterland of the Taklimakan desert. Front. Plant Sci. 13, 1094049 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. TerAvest, D. et al. Soil carbon pools, nitrogen supply, and tree performance under several groundcovers and compost rates in a newly planted apple orchard. Hortscience 46, 1687–1694 (2011).

    Article  CAS  Google Scholar 

  141. Tian, Y., Liu, J., Zhang, X. & Gao, L. Effects of summer catch crop, residue management, soil temperature and water on the succeeding cucumber rhizosphere nitrogen mineralization in intensive production systems. Nutr. Cycl. Agroecosyst. 88, 429–446 (2010).

    Article  Google Scholar 

  142. Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E. & McDaniel, M. D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771 (2015).

    Article  PubMed  CAS  Google Scholar 

  143. van der Pol, L. K. et al. Addressing the soil carbon dilemma: legumes in intensified rotations regenerate soil carbon while maintaining yields in semi-arid dryland wheat farms. Agric. Ecosyst. Environ. 330, 107906 (2022).

    Article  Google Scholar 

  144. Veloso, M. G. et al. High carbon storage in a previously degraded subtropical soil under no-tillage with legume cover crops. Agric. Ecosyst. Environ. 268, 15–23 (2018).

    Article  Google Scholar 

  145. Venkatesh, M. S., Hazra, K. K., Ghosh, P. K., Praharaj, C. S. & Kumar, N. Long-term effect of pulses and nutrient management on soil carbon sequestration in Indo-Gangetic plains of India. Can. J. Soil Sci. 93, 127–136 (2013).

    Article  CAS  Google Scholar 

  146. Voigtlaender, M. et al. Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant Soil 352, 99–111 (2012).

    Article  CAS  Google Scholar 

  147. Wang, B. et al. Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, Northwest China. Catena 92, 186–195 (2012).

    Article  CAS  Google Scholar 

  148. Wang, F. et al. Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China. Soil Sci. Plant Nutr. 56, 297–306 (2010).

    Article  Google Scholar 

  149. Wang, F. & Wu, S. Effects of afforestation model on soil and microorganism stoichiometric characteristics. Shaanxi For. Sci. Technol. 48, 9–13 (2020).

    Google Scholar 

  150. Wang, F., Zhu, W., Xia, H., Fu, S. & Li, Z. Nitrogen mineralization and leaching in the early stages of a subtropical reforestation in southern China. Restor. Ecol. 18, 313–322 (2010).

    Article  Google Scholar 

  151. Wang, P., Wang, Y. & Wu, Q. S. Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Soil Tillage Res. 155, 54–61 (2016).

    Article  Google Scholar 

  152. Wang, Q., Xia, J., Zhang, J., Zhang, J. & Liu, J. Soil enzyme activities and nutrient characteristics of different improving patterns in the Yellow River Delta Area. J. Soil Water Conserv. 26, 133–137 (2012).

    CAS  Google Scholar 

  153. Wang, S., Zhang, W. & Sanchez, F. Relating net primary productivity to soil organic matter decomposition rates in pure and mixed Chinese fir plantations. Plant Soil 334, 501–510 (2010).

    Article  CAS  Google Scholar 

  154. Wang, W. et al. Effects of labile carbon and phosphorus addition on N transformations with N- vs. non-N-fixing tree plantations. Ecosphere 9, e02165 (2018).

    Article  Google Scholar 

  155. Wang, X., Tang, C., Severi, J., Butterly, C. R. & Baldock, J. A. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytol. 211, 864–873 (2016).

    Article  PubMed  CAS  Google Scholar 

  156. Wani, S. P., Rego, T. J., Rajeswari, S. & Lee, K. K. Effect of legume-based cropping systems on nitrogen mineralization potential of vertisol. Plant Soil 175, 265–274 (1995).

    Article  CAS  Google Scholar 

  157. Wei, Z., Fan, J., Pan, W., Chen, G. & Liu, H. Soil amelioration effects of mixed plantations of Robinia Pseudoacacia and Populus Liaoningensis in saline-alkali soils along muddy seacoast. Bull. Soil Water Conserv. 32, 106–110,170 (2012).

    Google Scholar 

  158. Wu, P. & Xue, J. Effects of three different plantations on soil physicochemical and microbial characteristics in Krast region. J. Nanjing For. Univ. 39, 67–72 (2015).

    CAS  Google Scholar 

  159. Wu, Z., Wu, Y., Song, X., Peng, X. & Yang, L. Research on the mixed forest of Pinus tabulaeformis and Robinia pseudoacacia in the dry valley of the upper Minjiang river. J. Sichuan For. Sci. Technol. 35, 17–21 (2014).

    Google Scholar 

  160. Xiao, W. et al. Study of biomass and soil impact of Eucalyptus with Acacia crassicarpa mixed forest. Guangdong For. Sci. Technol. 15, 8–15 (1999).

    Google Scholar 

  161. Xue, L. et al. Effect of different mixed proportion on soil quantity in mixed Robinia pseudoacacia and Pinus tabulaeformis plantations. Sci. Soil Water Conserv. 17, 87–93 (2019).

    Google Scholar 

  162. Xue, S., Liu, G., Dai, Q., Dang, X. & Zhou, P. Effect of different vegetation restoration models on soil microbial biomass in eroded hilly loess plateau. J. Nat. Resour. 22, 20–27 (2007).

    Google Scholar 

  163. Yan, Z. et al. Diversified cropping systems benefit soil carbon and nitrogen stocks by increasing aggregate stability: results of three fractionation methods. Sci. Total Environ. 824, 153878 (2022).

    Article  PubMed  CAS  Google Scholar 

  164. Yao, Y., Zhao, Z., Wei, X. & Shao, M. Effects of shrub species on soil nitrogen mineralization in the desert–loess transition zone. Catena 173, 330–338 (2019).

    Article  CAS  Google Scholar 

  165. Yao, Z. et al. Dynamics and sequestration potential of soil organic carbon and total nitrogen stocks of leguminous green manure-based cropping systems on the Loess Plateau of China. Soil Tillage Res. 191, 108–116 (2019).

    Article  Google Scholar 

  166. Yuan, Z. et al. Effects of legume species introduction on vegetation and soil nutrient development on abandoned croplands in a semi-arid environment on the Loess Plateau, China. Sci. Total Environ. 541, 692–700 (2016).

    Article  PubMed  CAS  Google Scholar 

  167. Yuan, Z. et al. Medicago sativa improves soil carbon sequestration following revegetation of degraded arable land in a semi-arid environment on the Loess Plateau, China. Agric. Ecosyst. Environ. 232, 93–100 (2016).

    Article  Google Scholar 

  168. Zavyalova, N. E., Vasbieva, M. T. & Fomin, D. S. Microbial biomass, respiratory activity and nitrogen fixation in soddy-podzolic soils of the pre-urals area under various agricultural uses. Eurasia. Soil Sci. 53, 383–388 (2020).

    Article  CAS  Google Scholar 

  169. Zeng, Q., Li, X., Dong, Y., Li, Y. & An, S. Soil microbial biomass nitrogen and carbon, water soluble nitrogen and carbon under different arbors forests on the Loess Plateau. Acta Ecol. Sin. 35, 3598–3605 (2015).

    CAS  Google Scholar 

  170. Zhang, D. et al. Building up the soil carbon pool via the cultivation of green manure crops in the Loess Plateau of China. Geoderma 337, 425–433 (2019).

    Article  CAS  Google Scholar 

  171. Zhang, J. et al. Understory management and fertilization affected soil greenhouse gas emissions and labile organic carbon pools in a Chinese chestnut plantation. For. Ecol. Manag. 337, 126–134 (2015).

    Article  Google Scholar 

  172. Zhang, J. et al. Short-term effects on the heterogeneity of soil nutrients in mixed poplar–alder plantation. Ecol. Environ. Sci. 27, 216–223 (2018).

    Google Scholar 

  173. Zhang, Y., Dong, X., Xue, L., Xiao, L. & Zhu, S. Effect of young Tephrosia candida and Leucaena glauca plantations on soil fertility. Hunan For. Sci. Technol. 42, 6–9 (2015).

    Google Scholar 

  174. Zhang, Y. et al. Effect of long-term tillage and cropping system on portion of fungal and bacterial necromass carbon in soil organic carbon. Soil Tillage Res. 218, 105307 (2022).

    Article  Google Scholar 

  175. Zhao, S., Shi, S., Chen, J., Chen, X. & He, J. Effects of different rotation patterns on soil carbon and nitrogen contents and enzyme activities in the arid region of central Gansu. Acta Agrestia Sin. 27, 817–824 (2019).

    CAS  Google Scholar 

  176. Zhao, W. et al. Effects of tree species transformation on soil carbon, nitrogen, phosphorus and stoichiometry in mountainous areas of southern Fujian. Acta Agric. Univ. Jiangxiensis 44, 299–310 (2022).

    Google Scholar 

  177. Zhao, Y., Ji, T., Zhang, D. & Zhang, J. Soil physi-chemical properties, biomass and nutrient contents of forest litter in mixed plantations of Eucalyptus grandis and three tree species. Chin. J. Appl. Environ. Biol. 21, 948–953 (2015).

    Article  CAS  Google Scholar 

  178. Zhou, L. et al. Characteristics of soil nutrient and enzyme activities in plantations of Eucalyptus urophylla × E. grandis and five Acacia species. J. Trop. Subtrop. Bot. 29, 483–493 (2021).

    Google Scholar 

  179. Zhou, X. et al. Symbiotic nitrogen fixation and soil N availability under legume crops in an arid environment. J. Soils Sediment. 11, 762–770 (2011).

    Article  CAS  Google Scholar 

  180. Zhu, X. et al. Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N2-fixing vs. non-N2-fixing tree species. Plant Soil 399, 61–74 (2016).

    Article  CAS  Google Scholar 

  181. Zou, L. Study on productivity and soil physical and chemical property of mixed stand of Pinus massoniana with Acacia dealbata link. Prot. For. Sci. Technol. 5, 5–7 (2006).

    Google Scholar 

  182. Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).

    Google Scholar 

  183. Lin, Y. S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Change 5, 459–464 (2015).

    Article  CAS  Google Scholar 

  184. Tedersoo, L. et al. Global database of plants with root-symbiotic nitrogen fixation: NodDB. J. Veg. Sci. 29, 560–568 (2018).

    Article  Google Scholar 

  185. R Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  186. Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article  Google Scholar 

  187. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  188. Egger, M., Smith, G. D., Schneider, M., & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 315, 629 (1997).

    Article  CAS  Google Scholar 

  189. Chen, J. et al. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 4, eaaq1689 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Calcagno, V. & De Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).

    Article  Google Scholar 

  191. Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Article  CAS  Google Scholar 

  192. Hijmans, R. J. et al. raster: Geographic data analysis and modeling. R package version 3.6-26 (2023).

  193. Global Forest Resources Assessment 2020—Key Findings (FAO, 2020).

  194. Sun, X. & Chen, H. Meta-analysis shows that planting nitrogen-fixing species increases soil organic carbon stock. figshare https://doi.org/10.6084/m9.figshare.25458238 (2025).

Download references

Acknowledgements

We sincerely thank X. Chen and Z. Ma for their suggestions on data analysis. This work was supported by Guangdong Basic and Applied Basic Research Foundation (2025A1515011004), Shenzhen Science and Technology Program (JCYJ20220530150015035), National Natural Science Foundation of China (42367035, 32471685, 42361144886) and the Shaanxi Province Natural Science Foundation for Distinguished Young Scholar (2024JC-JCQN-32).

Author information

Authors and Affiliations

Authors

Contributions

X. S. and H. C. designed research and compiled and analysed data. X. S. wrote the initial draft with significant contribution from H. C. and J. C. Y.K., Y.Y., G.W.D.F., R.O.-H., C.W.M., Z.W., Y.H. and D.L. contributed to the revision of the paper.

Corresponding authors

Correspondence to Ji Chen or Hao Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Tables 1–3 and references.

Reporting Summary

Peer Review File

Supplementary Data 1

A list of identified invasive N-fixing species in different climate zones.

Supplementary Data 2

Source data for Supplementary figures and tables.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2a–d.

Source Data Fig. 3

Source data for Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Chen, J., Kuzyakov, Y. et al. Meta-analysis shows that planting nitrogen-fixing species increases soil organic carbon stock. Nat Ecol Evol (2025). https://doi.org/10.1038/s41559-025-02861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-025-02861-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing