Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Carnian theropod with unexpectedly derived features during the first dinosaur radiation

Abstract

The early diversification of dinosaurs produced a major ecological change in the terrestrial ecosystems, culminating with tetrapod assemblages dominated in abundance by dinosaurs by the Triassic/Jurassic boundary (~201 million years ago (Ma)). Therefore, studying the initial diversification of dinosaurs is crucial to understand the establishment of Mesozoic assemblages. However, the lack of stratigraphically continuous fossil data in the few geological units that preserve the oldest known dinosaurs (~233–227 Ma, Carnian age) obscures our understanding of this initial diversification. The Ischigualasto Formation in northwestern Argentina (231.4–225.9 Ma) yields a rich vertebrate assemblage and new studies resulted in an abundant and stratigraphically near-continuous fossil record, which offers new insights into the early diversification of dinosaurs. Among the discoveries, we report Anteavis crurilongus gen. et sp. nov., an early-diverging theropod, which supports the notable diversity of small- to medium-sized dinosaurs during the late Carnian. Anteavis is recovered outside Neotheropoda, but it has features previously thought to be exclusive to that group. We show that dinosaur diversity and abundance in the Ischigualasto Formation were higher than previously recognized, particularly among small herbivores (<30 kg) and medium-sized (30–200 kg) predators. This diversification occurred in Ischigualasto during a climatic shift to semi-arid conditions, but the return of more humid conditions resulted in a gap in the dinosaur record that started at 228.91 ± 0.14 Ma. Only 15 million years (Myr) later, in the middle Norian age, the dinosaur record recovered its abundance and diversity in the basin, but now it was characterized by larger-bodied species. Our findings demonstrate an early dinosaur diversification probably punctuated by a climate-driven faunal turnover in, at least, southwestern Pangaea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Skeletal anatomy of the Carnian theropod A. crurilongus.
Fig. 2: Phylogenetic relationships of A. crurilongus among early dinosaurs.
Fig. 3: General stratigraphic profile across the continuous sedimentary sequence of the Chañares–Los Colorados formations in the Hoyada de Ischigualasto locality.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article and its Supplementary Information. The datasets for phylogenetic and rarefaction analyses are available via figshare at https://doi.org/10.6084/m9.figshare.29539004 (ref.61).

Code availability

The custom codes used for the phylogenetic and rarefaction analyses are available via figshare at https://doi.org/10.6084/m9.figshare.29539004 (ref. 61).

References

  1. Nesbitt, S. J. et al. Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature 464, 95–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Martínez, R. N. et al. A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea. Science 331, 206–210 (2011).

    Article  PubMed  Google Scholar 

  3. Nesbitt, S. J., Barrett, P. M., Werning, S., Sidor, C. A. & Charig, A. J. The oldest dinosaur? A Middle Triassic dinosauriform from Tanzania. Biol. Lett. 9, 20120949 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heath, J. A., Cooper, N., Upchurch, P. & Mannion, P. D. Accounting for sampling heterogeneity suggests a low paleolatitude origin for dinosaurs. Curr. Biol. 35, 941–953 (2025).

    Article  CAS  PubMed  Google Scholar 

  5. Brusatte, S. L. et al. The origin and early radiation of dinosaurs. Earth Sci. Rev. 101, 68–100 (2010).

    Article  Google Scholar 

  6. Langer, M. C., Ezcurra, M. D., Bittencourt, J. S. & Novas, F. E. The origin and early evolution of dinosaurs. Biol. Rev. Camb. Philos. Soc. 85, 55–110 (2010).

    Article  PubMed  Google Scholar 

  7. Langer, M. C. L., Ramezani, J. & Da Rosa, A. A. S. U-Pb age constraints on dinosaur rise from south Brazil. Gondw. Res. 57, 133–140 (2018).

    Article  CAS  Google Scholar 

  8. Griffin, C. T. et al. Africa’s oldest dinosaurs reveal early suppression of dinosaur distribution. Nature 609, 313–319 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Lovelace, D. M. et al. Rethinking dinosaur origins: oldest known equatorial dinosaur-bearing assemblage (mid-late Carnian Popo Agie FM, Wyoming, USA). Zool. J. Linn. Soc. 203, zlae153 (2025).

    Google Scholar 

  10. Bakker, R. Anatomical and ecological evidence of endothermy in dinosaurs. Nature 238, 81–85 (1972).

    Article  Google Scholar 

  11. Charig, A. J. Competition between therapsids and archosaurs during the Triassic period: a review and synthesis of current theories. Symp. Zool. Soc. Lond. 52, 597–628 (1984).

    Google Scholar 

  12. Benton, M. J. Late Triassic extinctions and the origin of the dinosaurs. Science 260, 769–770 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Benton, M. J. Dinosaur success in the Triassic: a noncompetitive ecological model. Quart. Rev. Biol. 58, 29 (1983).

    Article  Google Scholar 

  14. Irmis, R. B. et al. A Late Triassic dinosauromorph assemblage from New Mexico and the rise of dinosaurs. Science 317, 358–361 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ezcurra, M. D. A new early dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Argentina: a reassessment of dinosaur origin and phylogeny. Syst. Palaeontol. 8, 371–424 (2010).

    Article  Google Scholar 

  16. Bernardi, M., Gianolla, P., Petti, F. M., Mietto, P. & Benton, M. J. Dinosaur diversification linked with the Carnian Pluvial Episode. Nat. Commun. 9, 1499 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Benton, M. J., Bernardi, M. & Kinsella, C. The Carnian Pluvial Episode and the origin of dinosaurs. J. Geol. Soc. 175, 1019–1026 (2018).

    Article  Google Scholar 

  18. Schoepfer, S. D., Algeo, T. J., van de Schootbrugge, B. & Whiteside, J. H. The Triassic–Jurassic transition—a review of environmental change at the dawn of modern life. Earth Sci. Rev. 232, 104099 (2022).

    Article  CAS  Google Scholar 

  19. Qvarnström, M. et al. Digestive contents and food webs record the advent of dinosaur supremacy. Nature 636, 397–403 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Corecco, L., Kohn, M. J. & Schultz, C. L. Triassic climate and the rise of the dinosaur empire in South America. J. S. Am. Earth Sci. 142, 104977 (2024).

  21. Novas, F. E., Ezcurra, M. D., Chatterjee, S. & Kutty, T. S. New dinosaur species from the Upper Triassic Upper Maleri and Lower Dharmaram formations of central India. Earth Environ. Sci. Trans. R. Soc. Edinb. 101, 333–349 (2010).

    Google Scholar 

  22. Martínez, R. N. et al. Vertebrate succession in the Ischigualasto Formation. J. Vert. Paleontol. 32, 10–30 (2013).

    Article  Google Scholar 

  23. Sereno, P. C. & Novas, F. E. The complete skull and skeleton of an early dinosaur. Science 258, 1137–1140 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Sereno, P. C., Forster, C. A., Rogers, R. R. & Monetta, A. M. Primitive dinosaur skeleton from Argentina and the early evolution of Dinosauria. Nature 361, 64–66 (1993).

    Article  Google Scholar 

  25. Alcober, O. & Martínez, R. N. A new herrerasaurid (Dinosauria, Saurischia) from the Upper Triassic Ischigualasto Formation of northwestern Argentina. ZooKeys 63, 55–81 (2010).

    Article  Google Scholar 

  26. Martínez, R. N. & Alcober, O. A. A basal sauropodomorph (Dinosauria: Saurischia) from the Ischigualasto Formation (Triassic, Carnian) and the early evolution of Sauropodomorpha. PLoS ONE 4, e4397 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sereno, P. C., Martínez, R. N. & Alcober, O. A. Osteology of Eoraptor lunensis (Dinosauria, Sauropodomorpha). J. Vert. Paleontol. 32, 83–179 (2013).

    Article  Google Scholar 

  28. Rogers, R. R. et al. The Ischigualasto tetrapod assemblage (Late Triassic, Argentina) and 40Ar/39Ar dating of dinosaur origins. Science 260, 794–797 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Desojo, J. B. et al. The Late Triassic Ischigualasto Formation at Cerro Las Lajas (La Rioja, Argentina): fossil tetrapods, high-resolution chronostratigraphy, and faunal correlations. Sci. Rep. 10, 12782 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Colombi, C. et al. A high-precision U-Pb zircon age constraints the timing of the faunistic and palynofloristic events of the Carnian Ischigualasto Formation, San Juan, Argentina. J. S. Am. Earth Sci. 111, 103433 (2021).

    Article  CAS  Google Scholar 

  31. Tabor, N. et al. in Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates Vol. 416 (eds Alonso-Zarza, A. & Tanner, L.) 17–41 (Geological Society of America, 2006).

  32. Currie, B., Colombi, C., Tabor, N., Shipman, T. & Montañez, I. Stratigraphy and architecture of the Upper Triassic Ischigualasto Formation, Ischigualasto Provincial Park, San Juan, Argentina. J. S. Am. Earth Sci. 27, 74–87 (2009).

    Article  Google Scholar 

  33. Colombi, C. E., Limarino, C. O. & Alcober, O. A. Allogenic controls on the fluvial architecture and fossil preservation of the Upper Triassic Ischigualasto Formation, NW Argentina. Sediment. Geol. 362, 1–16 (2017).

    Article  Google Scholar 

  34. Mancuso, A. C. et al. Paleoenvironmental and biotic changes in the Late Triassic of Argentina: testing hypotheses of abiotic forcing at the basin scale. Front. Earth Sci. 10, 883788 (2022).

    Article  Google Scholar 

  35. Colbert, E. H. The Triassic dinosaur Coelophysis. Mus. N. Ariz. Bull. 57, 1–160 (1989).

    Google Scholar 

  36. Raath, M. A. The Anatomy of the Triassic Theropod Syntarsus rhodesiensis (Saurischia: Podokesauridae) and a Consideration of its Biology (Rhodes University, 1977).

  37. Langer, M. C., McPhee, B. W., Marsola, J. C. A., Roberto-da-Silva, L. & Cabreira, S. F. Anatomy of the dinosaur Pampadromaeus barberenai (Saurischia—Sauropodomorpha) from the Late Triassic Santa Maria Formation of southern Brazil. PLoS ONE 14, e0212543 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nesbitt, S. J. et al. A complete skeleton of a Late Triassic saurischian and the early evolution of dinosaurs. Science 326, 1530–1533 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Sereno, P. C. The pectoral girdle and forelimb of the basal theropod Herrerasaurus ischigualastensis. J. Vert. Paleontol. 13, 425–450 (1994).

    Article  Google Scholar 

  40. Rowe, T. A new species of the theropod dinosaur Syntarsus from the Early Jurassic Kayenta Formation of Arizona. J. Vert. Paleontol. 9, 125–136 (1989).

    Article  Google Scholar 

  41. Nesbitt, S. J. & Ezcurra, M. D. The early fossil record of dinosaurs in North America: a new neotheropod from the base of the Upper Triassic Dockum Group of Texas. Act. Palaeontol. Pol. 60, 513–526 (2015).

    Google Scholar 

  42. Mancuso, A. C., Benavente, C. A., Irmis, R. B. & Mundil, R. Evidence for the Carnian Pluvial Episode in Gondwana: new multiproxy climate records and their bearing on early dinosaur diversification. Gond. Res. 86, 104–125 (2020).

    Article  CAS  Google Scholar 

  43. Dal Corso, J. et al. Extinction and dawn of the modern world in the Carnian (Late Triassic). Sci. Adv. 6, eaba0099 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Colombi, C. E., Rogers, R. R. & Alcober, O. A. Vertebrate taphonomy of the Ischigualasto Formation. J. Vert. Paleontol. 32, 31–50 (2012).

    Article  Google Scholar 

  45. Valdes, P. J., Scotese, C. R. & Lunt, D. J. Deep ocean temperatures through time. Clim. Past 17, 1483–1506 (2021).

  46. Santi Malnis, P., Colombi, C. E., Rothis, L. M. & Alcober, O. Fluvial architecture and paleoenvironmental evolution of the Los Colorados Formation (Norian): postrift stage of the Ischigualasto–Villa Unión Basin, NW Argentina. J. Sediment. Res. 90, 1436–1462 (2020).

    Article  Google Scholar 

  47. Apaldetti, C., Martínez, R. N., Cerda, I. A., Pol, D. & Alcober, O. An early trend towards gigantism in Triassic sauropodomorph dinosaurs. Nat. Ecol. Evol. 2, 1227–1232 (2018).

    Article  PubMed  Google Scholar 

  48. Barrett, P. M., Chapelle, K. E. J., Staunton, C. K., Botha, J. & Choiniere, J. N. Postcranial osteology of the neotype specimen of Massospondylus carinatus Owen, 1854 (Dinosauria: Sauropodomorpha) from the upper Elliot formation of South Africa. Palaeontol. Afr. 53, 114–178 (2019).

    Google Scholar 

  49. Waskow, K. & Sander, P. M. Growth record and histological variation in the dorsal ribs of Camarasaurus sp. (Sauropoda). J. Vert. Paleontol. 4, 852–869 (2014).

    Article  Google Scholar 

  50. Waskow, K. & Mateus, O. Dorsal rib histology of dinosaurs and a crocodylomorph from western Portugal: skeletochronological implications on age determination and life history traits. C. R. Palevol 16, 425–439 (2017).

    Article  Google Scholar 

  51. Cerda, I. A. et al. A basic guide for sampling and preparation of extant and fossil bones for histological studies. Publ. Electr. Asoc. Paleontol. Arg. 20, 15–28 (2020).

    Google Scholar 

  52. Francillon-Vieillot, H. et al. in Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends (ed. Carter, J. G.) 471–548 (Van Nestrand Reinhold, 1990).

  53. de Buffrénil, V. & Quilhac, A. in Comparative Skeletal Histology and Palaeohistology (eds de Buffrénil, V. et al.) 147–190 (CRC Press, 2021).

  54. Ezcurra, M. D., Marke, D., Walsh, S. A. & Brusatte, S. L. A revision of the ‘coelophysoid-grade’ theropod specimen from the Lower Jurassic of the Isle of Skye (Scotland). Scott. J. Geol. 59, sjg2023–012 (2023).

    Article  Google Scholar 

  55. Garcia, M. S., Cabreira, S. F., da Silva, L. R., Pretto, F. A. & Müller, R. T. A saurischian (Archosauria, Dinosauria) ilium from the Upper Triassic of southern Brazil and the rise of Herrerasauria. Anat. Rec. 307, 1011–1024 (2024).

    Article  Google Scholar 

  56. Norman, D. B., Baron, M. G., Garcia, M. S. & Müller, R. T. Taxonomic, palaeobiological and evolutionary implications of a phylogenetic hypothesis for Ornithischia (Archosauria: Dinosauria). Zool. J. Linn. Soc. 196, 1273–1309 (2022).

    Article  Google Scholar 

  57. Goloboff, P. A. & Morales, M. E. TNT version 1.6, with a graphical interface for MacOS and Linux, including new routines in parallel. Cladistics 39, 144–153 (2023).

    Article  PubMed  Google Scholar 

  58. Goloboff, P. A., Torres, A. & Arias, J. S. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34, 407–437 (2018).

    Article  PubMed  Google Scholar 

  59. Ezcurra, M. D. Exploring the effects of weighting against homoplasy in genealogies of palaeontological phylogenetic matrices. Cladistics 40, 242–281 (2024).

    Article  PubMed  Google Scholar 

  60. Spiekman, S. N. F., Ezcurra, M. D., Butler, R. J., Fraser, N. C. & Maidment, S. C. R. Pendraig milnerae, a new small-sized coelophysoid theropod from the Late Triassic of Wales. R. Soc. Open Sci. 8, 210915 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Martínez, R. N. et al. Supplementary Information of A Carnian theropod with unexpectedly derived features during the first dinosaur radiation. figshare https://doi.org/10.6084/m9.figshare.29539004 (2025).

  62. Ronquist, F., van der Mark, P. & Huelsenbeck, J. P. in The Phylogenetic Handbook: a Practical Approach to Phylogenetic Analysis and Hypothesis Testing (eds Lemey, P. et al.) 210−266 (Cambridge Univ. Press, 2009).

  63. Ezcurra, M. D. & Butler, R. J. The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction. Proc. R. Soc. B 285, 20180361 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ezcurra, M. D., Scheyer, T. M. & Butler, R. J. The origin and early evolution of Sauria: reassessing the Permian saurian fossil record and the timing of the crocodile-lizard divergence. PLoS ONE 9, e89165 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Benson, R. B. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Apaldetti, C., Pol, D., Ezcurra, M. D. & Martínez, R. N. Sauropodomorph evolution across the Triassic–Jurassic boundary: body size, locomotion, and their influence on morphological disparity. Sci. Rep. 11, 22534 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ezcurra, M. D. A new early coelophysoid neotheropod from the Late Triassic of northwestern Argentina. Ameghiniana 54, 506–538 (2017).

    Article  Google Scholar 

  69. Campione, N. E. MASSTIMATE: body mass estimation equations for vertebrates. R package version 2.0-1 (CRAN, 2020); https://CRAN.R-project.org/package=MASSTIMATE

  70. Campione, N. E., Evans, D. C., Brown, C. M. & Carrano, M. T. Body mass estimation in non-avian bipeds using a theoretical conversion to quadruped stylopodial proportions. Methods Ecol. Evol. 5, 913–923 (2014).

    Article  Google Scholar 

  71. Revell, L. J. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12, e16505 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).

    Article  Google Scholar 

  73. Laurin, M. The evolution of body size, Cope’s rule and the origin of amniotes. Syst. Biol. 53, 594–622 (2004).

    Article  PubMed  Google Scholar 

  74. Oksanen, J. vegan: community ecology package. R package version 2.6-4 (CRAN, 2022); https://CRAN.R-project.org/package=vegan

  75. Kent, D. V., Santi Malnis, P., Colombi, C. E., Alcober, O. A. & Mart¡nez, R. N. Age constraints on the dispersal of dinosaurs in the Late Triassic from magnetochronology of the Los Colorados Formation (Argentina). Proc. Natl Acad. Sci. USA 111, 7958–7963 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marsicano, C., Irmis, R., Mancuso, A., Mundil, R. & Chemale, F. The precise temporal calibration of dinosaur origins. Proc.Natl Acad. Sci. USA 113, 509–513 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Ezcurra, M. D. et al. Deep faunistic turnovers preceded the rise of dinosaurs in southwestern Pangaea. Nat. Ecol. Evol. 1, 1477–1483 (2017).

    Article  PubMed  Google Scholar 

  78. Aguirre Palafox, L. E. et al. U-Pb geochronology of paleosol carbonate cements by LA-ICP-MS: A proof of concept and strategy for dating the terrestrial record. Geochem. Geophys. Geosyst. 25, e2024GC011488 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.N.M. thanks Secretaría de Ciencia, Tecnología e Innovación of San Juan (SECITI) and IMCN of the Universidad Nacional de San Juan. This study used computational resources from Universidad Nacional de Córdoba (https://ccad.unc.edu.ar/), which are part of SNCAD–MinCyT, Argentina. We also thank the Willi Hennig Society for supporting the free use of TNT software.

Author information

Authors and Affiliations

Authors

Contributions

R.N.M. led the project, conducted phylogenetic analyses, results, discussions and paper writing. C.E.C. conducted palaeoenvironmental and taphonomic studies. M.D.E. conducted phylogenetic and rarefaction analyses. I.C. conducted the histology analysis. R.N.M. and M.D.E. produced the figures. D.O.A. performed specimen preparation. O.A.A. contributed to logistics.

Corresponding author

Correspondence to Ricardo N. Martínez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Steve Brusatte and Sterling Nesbitt for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Location and geology of the Ischigualasto–Villa Unión Basin at Hoyada de Ischigualasto locality.

a, Location maps of the study area. b, Geological map of the southern area of the Ischigualasto Basin (Hoyada de Ischigualasto). c, Ischigualasto Formation stratigraphic section and detailed sedimentological log of the Hyperodapedon-Exaeretodon-Herrerasaurus biozone. The detailed sedimentologic section of the study area corresponds to a 55 metre-thick interval that includes lithofacies characterization (that is, texture, structure, colors, paleosol features) and the stratigraphic position of the holotype of Anteavis crurilongus. Black star indicates the type locality of Anteavis crurilongus (PVSJ 1085).

Extended Data Fig. 2 Dorsal rib histology and cranial anatomy of Anteavis crurilongus (PVSJ 1085).

Complete transverse sections of the rib (a,b); general view (c) and detail (d) of the cortical bone; left prefrontal in lateral (e) and medial (f) views; partial left maxilla in lateral (g, h), occlusal (i, j), and medial (k, l) views; palatine ramus of left pterygoid in dorsal (m), and ventral (n) views; medial portion of the right pterygoid in dorsal (o), and ventral (p) views; right ectopterygoid in dorsal (q), and ventral (r) views; anterior portion of the right dentary in medial (s) and lateral (t) views; fragments of the posterior portion of the right dentary in lateral (u, v), and medial (w, x) views; and posterior portion of the right dentary in occlusal view (y). White arrowheads indicate the position of the lines of arrested growth (LAGs). Due to differences in the degree of magnification of the photographs, LAGs formed in the external fundamental system are only indicated in d. Abbreviations: a, alveolus; af, antorbital fossa; ap, anterior process; bf, basipterygoid flank; dp, dorsal process; EFS, external fundamental system; jpe, jugal process of the ectopterygoid; ecter, ectopterygoid recess; f, foramen; mg, Meckelian groove; ml, medial lamina; mr, mandibular ramus; os, orbital surface; pf, pterygoid fold; pmf, promaxillary foramen; pr, palatine ramus; r, ridge; s, symphysis; sg, groove for the splenial; slb, secondary lamellar bone; so, secondary osteon; svc, simple vascular canal; t, tooth; vp, ventral process. Scale bars: a-b 1 mm, c 0.5 mm, d 0.2 mm, e-y 10 mm.

Extended Data Fig. 3 Vertebral anatomy of Anteavis crurilongus (PVSJ 1085).

Anterior cervical vertebra in right lateral (a), left lateral (b), dorsal (c), and ventral (d) views; mid-cervical vertebra in right lateral (e), left lateral (f), dorsal (g), and ventral (h) views; posterior cervical vertebra in right lateral (i), left lateral (j), dorsal (k), and ventral (l) views; anterior dorsal vertebra in right lateral (m), left lateral (n), dorsal (o), and ventral (p) views; mid-dorsal vertebra in right lateral (q), left lateral (r), dorsal (s), and ventral (t) views; distal anterior caudal vertebra in right lateral (u), left lateral (v), dorsal (w), and ventral (x) views; mid-caudal vertebra in right lateral (y), left lateral (z), dorsal (aa), and ventral (ab) views; posterior caudal vertebra in right lateral (ac), left lateral (ad), dorsal (ae), and ventral (af) views. Scale bar: 10 mm.

Extended Data Fig. 4 Shoulder girdle, forelimb, hindlimb anatomy of Anteavis crurilongus (PVSJ 1085).

Right scapula and coracoid in lateral (a), medial (b), and posterior (c) views; right humerus in anterior and slightly medial (d), posterior and slightly lateral (e), proximal (f), lateral (g), and medial (h) views; proximal end of the right ulna in lateral (i), medial (j), and proximal (k) views; distal end of the right ulna in lateral (l), medial (m), and proximal (n) views; right manual phalanx in dorsal (o), ventral (p), lateral (q), and medial (r) views; left femur in lateral (s), medial (t), anterior (u), posterior (v), proximal (w), and distal (x) views; right tibia in lateral (y), medial (z), anterior (aa), posterior (ab), proximal (ac), and distal (ad) views; left astragalus in proximal (ae), distal (af), anterior (ag), posterior (ah), medial (ai), and lateral (aj) views; detail of the groove in the left astragalus in proximal view (ak); left metatarsal I in dorsal (al) and medial (am) views; left metatarsal II in dorsal (an) and lateral (ao) views; left metatarsals III and IV and left phalanx 1 of digit I in dorsal (ap) and lateral (aq) views; left metatarsal V in dorsal (ar), ventral (as), and proximal (at) views; distal tarsal 3 in proximal (au), and distal (av) views; distal tarsal 4 in proximal (aw), and distal (ax) views. Abbreviations: aaf, surface for astragalar ascending process; ae, anterior expansion; afh, articular facet for the humerus; amc, anteromedial corner; amt, anteromedial tuber; alt, anterolateral tuber; ap, ascending process; at, anterior tuberosities; bt, biceps tuber; c, coracoid; cc, cnemial crest; cco, calcaneal concavity; cf, coracoid foramen; ct, crista tibiofibularis; dip, dorsal intercondylar process; dt, dorsal tuberosity; dvd, dorsoventral depression; dpc, deltopectoral crest; ect, ectepicondyle; ent, entepicondyle; f, foramen; fc, fibular crest; ff, fibular facet; ft, fourth trochanter; g, glenoid; gr, groove; gt, greater trochanter; hh, humeral head; lc, lateral condyle; lclp, lateral collateral ligament pit; lf, lateral flange; llp, lateral ligament pit; ls, ligament scar; lt, lesser trochanter; mc, medial condyle; mlp, medial ligament pit; mp, medial protuberance; mt, medial tuberosity; n, notch; pp, post-glenoid process; r, ridge; rc, radial condyle; rf, fossa for articulation with the radius; s, scapula; sr, glenoidal sharp rim; ol, olecranon; ot, ovoid tuberosity; plf, posterolateral flange; pf, posterior fossa; pt, posterior tuberosities; rf, radial fossa; t, tuberosity; tf, tibial facet; ts, trochanteric shelf; uaf, articular surface for the ulnare; uc, ulnar condyle; vip, ventral intercondylar process. Scale bars: a–e g–r 10 mm, e 20 mm, s-ad ak-as 50 mm, ae-aj al-ax 10 mm, ak 10 mm.

Extended Data Fig. 5 Pelvic and sacral anatomy of Anteavis crurilongus (PVSJ 1085).

Pelvis in right lateral (a), left lateral (b), anterior (c), posterior (d), dorsal (e), and ventral (f) views; dorsosacral vertebra in left lateral (g), dorsal (h), ventral (i), anterior (j), and posterior (k) views; caudosacral vertebra in left lateral (l), dorsal (m), ventral (n), anterior (o), and posterior (p) views; close-up of the preacetabular process in anteromedial view (q); close-up of the postacetabular process in posteroventral and slightly lateral view (r); close-up of the sacrum in posteroventral view (s). Abbreviations: at, antitrochanter; bf, brevis fossa; bo, bony overgrow; dt, dorsal tuberosity; fcs, caudosacral rib facet; fds, dorsosacral rib facet; fs, fused sacral primordial vertebrae; il, ilium; ip, ischial peduncle; is, ischium; n, notch; na, neural arch; nc, neural channel; ns, neural spine; lp, left pubis; lprp, left preacetabular process; lpup, left pubic peduncle; of, obturator foramen; pf, pubic fenestra; pfo, pubic foot; pop, postacetabular process; pp, puboischiadic plate; pup, pubic peduncle; rp, right pubis; rpup, right pubic peduncle; rprp, right preacetabular process; sac, supraacetabular crest; t, tuberosity; 2 Sv, second sacral vertebra; 2 Sv, third sacral vertebra. Scale bars: af 50 mm, g,p 10 mm, q-s 10 mm.

Extended Data Fig. 6 Phylogenetic relationships of Anteavis crurilongus gen. et sp. nov. in the data matrix focused on early theropods.

(a) Global strict consensus tree recovered in the parsimony analyses under implied weighting; absolute (left) and GC (group present/contradicted) (right) symmetric resampling frequencies are shown above each branch. (b) Majority rule consensus tree recovered from the Bayesian phylogenetic analysis; numbers at nodes indicate posterior probabilities and branch colours indicate character state transition rates (that is, evolutionary rates).

Extended Data Fig. 7 Phylogenetic relationships of Anteavis crurilongus gen. et sp. nov. in the data matrix focused on early dinosauromorphs.

(a) Global strict consensus tree recovered in the parsimony analyses under implied weighting; absolute (left) and GC (group present/contradicted) (right) symmetric resampling frequencies are shown above each branch. (b) Majority rule consensus tree recovered from the Bayesian phylogenetic analysis; numbers at nodes indicate posterior probabilities and branch colours indicate character state transition rates (that is, evolutionary rates).

Extended Data Table 1 Measurements (in mm) of postatlantal vertebrae, pes, pelvic and long bone lengths of several early dinosaurs
Extended Data Table 2 Measurements (in mm) of the pectoral girdle, humerus, ulna, pelvic girdle, and hindlimb of Anteavis crurilongus (PVSJ 1085)
Extended Data Table 3 Taxa from the Hyperodapedon-Exaeretodon-Herrerasaurus biozone of the Ischigualasto Formation and their abundance according to weight ranges

Supplementary information

Supplementary Information

Geological and palaeontological settings; holotypic specimen of A. crurilongus; extended diagnosis of A. crurilongus; detailed description of A. crurilongus; maturity assessment of PVSJ 1085; comparisons between Anteavis and Eodromaeus; phylogenetic analyses; body mass optimizations; rarefaction diversity curves; and references.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, R.N., Colombi, C.E., Ezcurra, M.D. et al. A Carnian theropod with unexpectedly derived features during the first dinosaur radiation. Nat Ecol Evol (2025). https://doi.org/10.1038/s41559-025-02868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-025-02868-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing