Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antisolvent seeding of self-assembled monolayers for flexible monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells

Abstract

Flexible perovskite/copper indium gallium selenide (CIGS) tandem solar cells hold great promise for lightweight, high-efficiency applications, yet achieving high-quality perovskite top cells on the rough surfaces of flexible CIGS bottom cells remains challenging. Accordingly, we developed an antisolvent-seeding strategy that decouples self-assembly monolayers (SAMs) adsorption from dissolution, while integrating perovskite seeding. A high-polarity solvent prevents SAMs clustering during dissolution, while a low-polarity antisolvent promotes high-density SAMs formation during adsorption. Additionally, a pre-mixed seed layer further improves perovskite wettability, crystallinity and adhesion. These advancements enable the fabrication of a 1.09-cm2 flexible monolithic perovskite/CIGS tandem with a stabilized efficiency of 24.6% (certified 23.8%), comparable to the best-performing rigid perovskite/CIGS tandems and representing one of the highest efficiencies among flexible thin-film solar cells. The flexible devices also demonstrate excellent durability, retaining over 90% of initial performance after 320 h of operation and 3,000 bending cycles at a 1-cm radius.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of solvent on the dissolution and adsorption of SAMs.
Fig. 2: Effect of antisolvent-seeding strategy on SAMs.
Fig. 3: Effect of antisolvent-seeding strategy on perovskites.
Fig. 4: Effect of antisolvent-seeding strategy on perovskite single-junction solar cells.
Fig. 5: Performance of flexible monolithic perovskite/CIGS tandem solar cells.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article and its Supplementary Information. Any additional information is available from corresponding authors upon request. Source data are provided with this paper.

References

  1. Green, M. A. et al. Solar cell efficiency tables (version 64). Prog. Photovolt.: Res. Appl. 32, 425–441 (2024).

  2. Ying, Z., Yang, X., Wang, X. & Ye, J. Towards the 10-year milestone of monolithic perovskite/silicon tandem solar cells. Adv. Mater. 36, 2311501 (2024).

    Article  Google Scholar 

  3. Keller, J. et al. High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency. Nat. Energy 9, 467–478 (2024).

    Article  Google Scholar 

  4. Liang, H. et al. 29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells. Joule 7, 2859–2872 (2023).

    Article  Google Scholar 

  5. Yang, S.-C. et al. Efficiency boost of bifacial Cu(In,Ga)Se2 thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process. Nat. Energy 8, 40–51 (2023).

    Article  Google Scholar 

  6. Fu, F. et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat. Energy 2, 16190 (2016).

    Article  Google Scholar 

  7. Lang, F. et al. Proton radiation hardness of perovskite tandem photovoltaics. Joule 4, 1054–1069 (2020).

    Article  Google Scholar 

  8. Otte, K., Makhova, L., Braun, A. & Konovalov, I. Flexible Cu(In,Ga)Se2 thin-film solar cells for space application. Thin Solid Films 511–512, 613–622 (2006).

    Article  Google Scholar 

  9. Fu, F. et al. Flexible perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells. Preprint at arXiv https://doi.org/10.48550/arXiv.1907.10330 (2019).

  10. Zheng, J. et al. Efficient flexible monolithic perovskite–CIGS tandem solar cell on conductive steel substrate. ACS Energy Lett. 9, 1545–1547 (2024).

    Article  Google Scholar 

  11. Jeong, I. et al. Flexible and lightweight perovskite/Cu(In,Ga)Se2 tandem solar cells. Joule https://doi.org/10.1016/j.joule.2024.11.011 (2025).

    Article  Google Scholar 

  12. Tian, W. et al. Inert interlayer secures flexible monolithic perovskite/CIGS tandem solar cells with efficiency beyond 21%. ACS Energy Lett. 10, 562–568 (2025).

    Article  Google Scholar 

  13. Tian, L. et al. Divalent cation replacement strategy stabilizes wide-bandgap perovskite for Cu(In,Ga)Se2 tandem solar cells. Nat. Photonics https://doi.org/10.1038/s41566-025-01618-z (2025).

  14. Todorov, T. et al. Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Adv. Energy Mater. 5, 1500799 (2015).

    Article  Google Scholar 

  15. Ruiz-Preciado, M. A. et al. Monolithic two-terminal perovskite/CIS tandem solar cells with efficiency approaching 25%. ACS Energy Lett. 7, 2273–2281 (2022).

    Article  Google Scholar 

  16. Jang, Y. H., Lee, J. M., Seo, J. W., Kim, I. & Lee, D.-K. Monolithic tandem solar cells comprising electrodeposited CuInSe2 and perovskite solar cells with a nanoparticulate ZnO buffer layer. J. Mater. Chem. A 5, 19439–19446 (2017).

    Article  Google Scholar 

  17. Uhl, A. R. et al. Solution-processed low-bandgap CuIn(S,Se)2 absorbers for high-efficiency single-junction and monolithic chalcopyrite-perovskite tandem solar cells. Adv. Energy Mater. 8, 1801254 (2018).

    Article  Google Scholar 

  18. Han, Q. et al. High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells. Science 361, 904–908 (2018).

    Article  Google Scholar 

  19. Jošt, M. et al. 21.6%-efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett. 4, 583–590 (2019).

    Article  Google Scholar 

  20. Liu, J. et al. Perovskite-silicon tandem solar cells with bilayer interface passivation. Nature 635, 596–603 (2024).

    Article  Google Scholar 

  21. Jiang, X. et al. Isomeric diammonium passivation for perovskite–organic tandem solar cells. Nature 635, 860–866 (2024).

    Article  Google Scholar 

  22. Wang, Y. et al. Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635, 867–873 (2024).

    Article  Google Scholar 

  23. Jošt, M. et al. Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Lett. 7, 1298–1307 (2022).

    Article  Google Scholar 

  24. Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).

    Article  Google Scholar 

  25. Richardson, J. J., Björnmalm, M. & Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015).

    Article  Google Scholar 

  26. Richardson, J. J. et al. Innovation in layer-by-layer assembly. Chem. Rev. 116, 14828–14867 (2016).

    Article  Google Scholar 

  27. Xiao, F.-X., Pagliaro, M., Xu, Y.-J. & Liu, B. Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: a new perspective for rational construction of multilayer assemblies. Chem. Soc. Rev. 45, 3088–3121 (2016).

    Article  Google Scholar 

  28. Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).

    Article  Google Scholar 

  29. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  Google Scholar 

  30. Li, J. et al. Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides. Nat. Energy 9, 308–315 (2024).

    Article  Google Scholar 

  31. Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).

    Article  Google Scholar 

  32. Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618 (2021).

    Article  Google Scholar 

  33. Duan, L. et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).

    Article  Google Scholar 

  34. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).

    Article  Google Scholar 

  35. Li, M., Liu, M., Qi, F., Lin, F. R. & Jen, A. K. Y. Self-assembled monolayers for interfacial engineering in solution-processed thin-film electronic devices: design, fabrication, and applications. Chem. Rev. 124, 2138–2204 (2024).

    Article  Google Scholar 

  36. Zhao, Y., Luan, X., Han, L. & Wang, Y. Post-assembled alkylphosphonic acids for efficient and stable inverted perovskite solar cells. Adv. Funct. Mater. 34, 2405646 (2024).

    Article  Google Scholar 

  37. Marcus, Y. & Hefter, G. Ion pairing. Chem. Rev. 106, 4585–4621 (2006).

    Article  Google Scholar 

  38. Dietrich, H. & Zahn, D. Molecular mechanisms of solvent-controlled assembly of phosphonate monolayers on oxide surfaces. J. Phys. Chem. C. 121, 18012–18020 (2017).

    Article  Google Scholar 

  39. Chen, X. et al. Studies on the effect of solvents on self-assembled monolayers formed from organophosphonic acids on indium tin oxide. Langmuir 28, 9487–9495 (2012).

    Article  Google Scholar 

  40. Liu, M. et al. Compact hole-selective self-assembled monolayers enabled by disassembling micelles in solution for efficient perovskite solar cells. Adv. Mater. 35, 2304415 (2023).

    Article  Google Scholar 

  41. Nie, H.-Y., Walzak, M. J. & McIntyre, N. S. Delivering octadecylphosphonic acid self-assembled monolayers on a Si wafer and other oxide surfaces. J. Phys. Chem. B 110, 21101–21108 (2006).

    Article  Google Scholar 

  42. Ito, Y. et al. Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J. Am. Chem. Soc. 131, 9396–9404 (2009).

    Article  Google Scholar 

  43. Zheng, X. et al. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8, 462–472 (2023).

    Article  Google Scholar 

  44. Tockhorn, P. et al. Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells. Nat. Nanotechnol. 17, 1214–1221 (2022).

    Article  Google Scholar 

  45. Tang, H. et al. Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383, 1236–1240 (2024).

    Article  Google Scholar 

  46. Chen, Y. et al. Self-sacrifice alkali acetate seed layer for efficient four-terminal perovskite/silicon tandem solar cells. Nano Energy 100, 107529 (2022).

    Article  Google Scholar 

  47. Auer, S. & Frenkel, D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature 413, 711–713 (2001).

    Article  Google Scholar 

  48. Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902 (2021).

    Article  Google Scholar 

  49. Boccard, M. & Ballif, C. Influence of the subcell properties on the fill factor of two-terminal perovskite–silicon tandem solar cells. ACS Energy Lett. 5, 1077–1082 (2020).

    Article  Google Scholar 

  50. Fukuda, K. et al. A bending test protocol for characterizing the mechanical performance of flexible photovoltaics. Nat. Energy 9, 1335–1343 (2024).

    Article  Google Scholar 

  51. He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article  Google Scholar 

  52. Kafedjiska, I. et al. Integration of rough RTP absorbers into CIGS-perovskite monolithic tandems by NiOx(:Cu)+SAM hole-transporting bi-layers. Sol. Energy Mater. Sol. Cells 254, 112248 (2023).

    Article  Google Scholar 

  53. Kafedjiska, I. et al. Disentangling the effect of the hole-transporting layer, the bottom, and the top device on the fill factor in monolithic CIGSe-perovskite tandem solar cells by using spectroscopic and imaging tools. J. Phys. Energy 5, 024014 (2023).

    Article  Google Scholar 

  54. Kafedjiska, I. et al. Advanced characterization and optimization of NiOx:Cu-SAM hole-transporting bi-layer for 23.4% efficient monolithic Cu(In,Ga)Se2-perovskite tandem solar cells. Adv. Funct. Mater. 33, 2302924 (2023).

    Article  Google Scholar 

  55. Geng, C. et al. Crystallization modulation and holistic passivation enables efficient two-terminal perovskite/CuIn(Ga)Se2 tandem solar cells. Nano Micro Lett. 17, 8 (2025).

    Article  Google Scholar 

  56. Yan, B. et al. Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell. Appl. Phys. Lett. 99, 113512 (2011).

    Article  Google Scholar 

  57. Mahabaduge, H. P. et al. High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates. Appl. Phys. Lett. 106, 133501 (2015).

    Article  Google Scholar 

  58. Hwang, I., Um, H.-D., Kim, B.-S., Wober, M. & Seo, K. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires. Energy Environ. Sci. 11, 641–647 (2018).

    Article  Google Scholar 

  59. Sun, Y. et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2, 513–520 (2019).

    Article  Google Scholar 

  60. Li, Z. et al. Hybrid perovskite–organic flexible tandem solar cell enabling highly efficient electrocatalysis overall water splitting. Adv. Energy Mater. 10, 2000361 (2020).

    Article  Google Scholar 

  61. Yang, K.-J. et al. Sodium effects on the diffusion, phase, and defect characteristics of kesterite solar cells and flexible Cu2ZnSn(S,Se)4 with greater than 11% efficiency. Adv. Funct. Mater. 31, 2102238 (2021).

    Article  Google Scholar 

  62. Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022).

    Article  Google Scholar 

  63. Flexible Solar Cells with Record Efficiency of 22.2% (Empa, 2022); https://www.empa.ch/web/s604/solarzellen-rekord?inheritRedirect=true

  64. Liang, X. et al. High-efficiency flexible Sb2Se3 solar cells by back interface and absorber bulk deep-level trap engineering. ACS Energy Lett. 8, 213–221 (2023).

    Article  Google Scholar 

  65. Zheng, X. et al. Versatile organic photovoltaics with a power density of nearly 40 W g−1. Energy Environ. Sci. 16, 2284–2294 (2023).

    Article  Google Scholar 

  66. Song, W. et al. Ultra robust and highly efficient flexible organic solar cells with over 18% efficiency realized by incorporating a linker dimerized acceptor. Angew. Chem. Int. Ed. 62, 202310034 (2023).

    Article  Google Scholar 

  67. Ren, N. et al. 25%-Efficiency flexible perovskite solar cells via controllable growth of SnO2. iEnergy 3, 39–45 (2024).

    Article  Google Scholar 

  68. Wang, X. et al. Ultrathin (30 µm) flexible monolithic perovskite/silicon tandem solar cell. Sci. Bull. 69, 1887–1894 (2024).

    Article  Google Scholar 

  69. Gong, C. et al. An equalized flow velocity strategy for perovskite colloidal particles in flexible perovskite solar cells. Adv. Mater. 36, 2405572 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

J.Y. acknowledges financial supports from the National Key Research and Development Program of China (grant number 2024YFB3817304), Baima Lake Laboratory Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (grant number LBMHD24E020002). Z.Y. acknowledges financial support from the National Natural Science Foundation of China (grant number 62204245) and Zhejiang Provincial Natural Science Foundation of China (grant number LY24F040003). X.Y. acknowledges financial support from the National Natural Science Foundation of China (grant number U23A200098), Key Research and Development Program of Zhejiang Province (grant numbers 2022C01215, 2024C01092, 2025C01154), Key Research and Development Program of Ningbo (grant numbers 2023Z151, 2024QL037). We thank Shenzhen HUASUAN Technology Co., Ltd. for the assistance with the theoretical calculations.

Author information

Authors and Affiliations

Contributions

Z.Y., X.Y. and J.Y. contributed to the conceptualization, project administration, funding acquisition, original draft writing, review and editing. X.Y. and J.Y. contributed to the supervision. Z.Y., X.Y., C.Z. and J.Y. conducted the investigation. Z.Y., X.Y. and C.Z. were responsible for the methodology. Z.Y., S.S., X.L., G.C., C.L., D.L., M.Z., X.G., H.T., Y.S., L.L., C.X. and Y.Z. contributed to the visualization.

Corresponding authors

Correspondence to Chao Zhang, Xi Yang or Jichun Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Alex Jen, Jianghui Zheng, and Jun Yin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–15, Figs. 1–72 and Tables 1–8.

Reporting Summary

Supplementary Data

Statistical source data for Supplementary Figs. 51 and 60.

Source data

Source Data Fig. 1

Source data for Fig. 1b,c.

Source Data Fig. 3

Source data for Fig. 3b,c,f,i.

Source Data Fig. 4

Source data for Fig. 4b–d and g–i.

Source Data Fig. 5

Source data for Fig. 5c–i.

ChemDraw file Fig. 1a

ChemDraw file for Fig. 1a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, Z., Su, S., Li, X. et al. Antisolvent seeding of self-assembled monolayers for flexible monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells. Nat Energy 10, 737–749 (2025). https://doi.org/10.1038/s41560-025-01760-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-025-01760-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing