Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-adaptive electrolytes for fast-charging batteries

Subjects

Abstract

Fast charging of high-energy batteries is critical for transportation electrification but remains challenging because the rapid rise in cell overpotential easily exceeds electrolytes’ fixed electrochemical stability window. Here we design a self-adaptive electrolyte with a dynamically expanding electrochemical stability window that increases in real time during charging, outpacing the rise in overpotential as the charging current intensifies. The self-adaptive electrolyte is a single-phase solution of salt and complementary oxidation- and reduction-resistant solvents at the cloud point composition but can undergo solvent separation to dynamically redistribute solvent components during charging. The oxidation-resistant solvents concentrate at the positive electrode and reduction-resistant solvents accumulate at the negative electrode, broadening the electrolyte stability window in real time during charging. Proof-of-concept experiments validate the versatility of this design in both aqueous zinc-metal and non-aqueous lithium-metal batteries, achieving high Coulombic efficiencies of negative electrodes and enhanced oxidative stability for positive electrodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Working principle of traditional electrolytes and self-adaptive electrolytes.
Fig. 2: Design principle of self-adaptive electrolytes.
Fig. 3: Charge-driven phase separation of self-adaptive electrolyte.
Fig. 4: Charge-driven HER suppression of self-adaptive electrolyte.
Fig. 5: Electrochemical performance of self-adaptive electrolyte.
Fig. 6: Demonstrating the universality of self-adaptive electrolyte engineering in lithium-metal batteries.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article and its Supplementary Information. Source data are provided with this paper.

References

  1. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  Google Scholar 

  2. Moshkovich, M., Gofer, Y. & Aurbach, D. Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions. J. Electrochem. Soc. 148, E155 (2001).

    Article  Google Scholar 

  3. Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7, 718–725 (2022).

    Article  Google Scholar 

  4. Zheng, W. et al. Enhancing the reaction kinetics and structural stability of high-voltage LiCoO2 via polyanionic species anchoring. Energy Environ. Sci. 17, 4147–4156 (2024).

    Article  Google Scholar 

  5. Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    Article  Google Scholar 

  6. Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  Google Scholar 

  7. Kühnel, R.-S., Reber, D. & Battaglia, C. Perspective—electrochemical stability of water-in-salt electrolytes. J. Electrochem. Soc. 167, 070544 (2020).

    Article  Google Scholar 

  8. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article  Google Scholar 

  9. Liang, X. et al. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119 (2017).

    Article  Google Scholar 

  10. Wan, H., Xu, J. & Wang, C. Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2024).

    Article  Google Scholar 

  11. Lv, T. & Suo, L. Water-in-salt widens the electrochemical stability window: thermodynamic and kinetic factors. Curr. Opin. Electrochem. 29, 100818 (2021).

    Article  Google Scholar 

  12. Ye, Y. et al. Quadruple the rate capability of high-energy batteries through a porous current collector design. Nat. Energy 9, 643–653 (2024).

    Article  Google Scholar 

  13. Landesfeind, J., Hattendorff, J., Ehrl, A., Wall, W. A. & Gasteiger, H. A. Tortuosity determination of battery electrodes and separators by impedance spectroscopy. J. Electrochem. Soc. 163, A1373 (2016).

    Article  Google Scholar 

  14. Lu, L.-L. et al. Extremely fast-charging lithium ion battery enabled by dual-gradient structure design. Sci. Adv. 8, eabm6624 (2022).

    Article  Google Scholar 

  15. Parikh, D., Christensen, T. & Li, J. Correlating the influence of porosity, tortuosity, and mass loading on the energy density of LiNi0.6Mn0.2Co0.2O2 cathodes under extreme fast charging (XFC) conditions. J. Power Sources 474, 228601 (2020).

    Article  Google Scholar 

  16. Lu, Y. et al. Breaking the molecular symmetricity of sulfonimide anions for high-performance lithium-metal batteries under extreme cycling conditions. Nat. Energy https://doi.org/10.1038/s41560-024-01679-4 (2024).

  17. Li, T., Zhang, X.-Q., Shi, P. & Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium-metal batteries. Joule 3, 2647–2661 (2019).

    Article  Google Scholar 

  18. Zhang, Q.-K. et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium-metal batteries. Nat. Energy 8, 725–735 (2023).

    Article  Google Scholar 

  19. Jain, R. et al. Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater. 7, 736–746 (2022).

    Article  Google Scholar 

  20. Kim, Y. et al. Sodium biphenyl as anolyte for sodium–seawater batteries. Adv. Funct. Mater. 30, 2001249 (2020).

    Article  Google Scholar 

  21. Cho, S.-J. et al. Monolithic heterojunction quasi-solid-state battery electrolytes based on thermodynamically immiscible dual phases. Energy Environ. Sci. 12, 559–565 (2019).

    Article  Google Scholar 

  22. Park, N. R. et al. Understanding the role of lithium borate as the surface coating on high-voltage single crystal LiNi0.5Mn1.5O4. Adv. Funct. Mater. 34, 2312091 (2024).

    Article  Google Scholar 

  23. Jafari, S. A. & Entezari, M. H. Salting out in ACN/water systems: Hofmeister effects and partition of quercetin. J. Mol. Liq. 312, 113331 (2020).

    Article  Google Scholar 

  24. Li, M., Zhuang, B., Lu, Y., An, L. & Wang, Z.-G. Salt-induced liquid–liquid phase separation: combined experimental and theoretical investigation of water–acetonitrile–salt mixtures. J. Am. Chem. Soc. 143, 773–784 (2021).

    Article  Google Scholar 

  25. Hyde, A. M. et al. General principles and strategies for salting-out informed by the Hofmeister series. Org. Process Res. Dev. 21, 1355–1370 (2017).

    Article  Google Scholar 

  26. Jiao, Y. et al. Mechanical bond-assisted full-spectrum investigation of radical interactions. J. Am. Chem. Soc. 144, 23168–23178 (2022).

    Article  Google Scholar 

  27. Thomas, A. P., Palanikumar, L., Jeena, M., Kim, K. & Ryu, J.-H. Cancer-mitochondria-targeted photodynamic therapy with supramolecular assembly of HA and a water soluble NIR cyanine dye. Chem. Sci. 8, 8351–8356 (2017).

    Article  Google Scholar 

  28. Gomes, R. J. et al. Modulating water hydrogen bonding within a non-aqueous environment controls its reactivity in electrochemical transformations. Nat. Catal. 7, 689–701 (2024).

    Article  Google Scholar 

  29. Ohno, K., Okimura, M., Akai, N. & Katsumoto, Y. The effect of cooperative hydrogen bonding on the OH stretching-band shift for water clusters studied by matrix-isolation infrared spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 7, 3005–3014 (2005).

    Article  Google Scholar 

  30. Jie, Y. et al. Enabling high-voltage lithium-metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed. 59, 3505–3510 (2020).

    Article  Google Scholar 

  31. Aurbach, D., Youngman, O., Gofer, Y. & Meitav, A. The electrochemical behaviour of 1,3-dioxolane—LiClO4 solutions—I. uncontaminated solutions. Electrochim. Acta 35, 625–638 (1990).

    Article  Google Scholar 

  32. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J.-G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium-metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    Article  Google Scholar 

  33. Becke, A. D. Density‐functional thermochemistry. I. the effect of the exchange‐only gradient correction. J. Chem. Phys. 96, 2155–2160 (1992).

    Article  Google Scholar 

  34. Frisch, M. J. et al. Gaussian 09, revision A.02 (Gaussian Inc., 2009).

  35. Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  Google Scholar 

  36. Jorgensen, W. L., Maxwell, D. S. & TiradoRives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  Google Scholar 

  37. Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. & Jorgensen, W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001).

    Article  Google Scholar 

  38. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  Google Scholar 

  39. Dodda, L. S., de Vaca, I. C., Tirado-Rives, J. & Jorgensen, W. L. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45, W331–W336 (2017).

    Article  Google Scholar 

  40. Marenich, A. V., Jerome, S. V., Cramer, C. J. & Truhlar, D. G. Charge model 5: an extension of hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J. Chem. Theory Comput. 8, 527–541 (2012).

    Article  Google Scholar 

  41. Vilseck, J. Z., Tirado-Rives, J. & Jorgensen, W. L. Evaluation of CM5 charges for condensed-phase modeling. J. Chem. Theory Comput. 10, 2802–2812 (2014).

    Article  Google Scholar 

  42. Su, Q. et al. Organic fillers regulating the solvation structure of zinc ions in aqueous electrolytes for high-stability Zn2+/Li+ hybrid batteries. ACS Appl. Energy Mater. 6, 11299–11307 (2023).

    Article  Google Scholar 

  43. Zeron, I. M., Abascal, J. L. F. & Vega, C. A force field of Li+, Na+, K+, Mg2+, Ca2+, Cl, and SO42− in aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions. J. Chem. Phys. 151, 134504 (2019).

    Article  Google Scholar 

  44. Martinez, L., Andrade, R., Birgin, E. G. & Martinez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  Google Scholar 

  45. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Basic Energy Science (award number DE-SC0023408).

Author information

Authors and Affiliations

Authors

Contributions

C.-X.Z. and C.W. conceived the idea for the project. C.-X.Z. and Z.L. performed electrochemical experiments. C.-X.Z. conducted the calculation. B.C. and F.C. carried out the NMR analysis. C.-X.Z. and C.W. drafted the paper. C.W. directed the project.

Corresponding author

Correspondence to Chunsheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Elie Paillard and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29.

Source data

Source Data Fig. 2

Raw data of ternary phase diagrams.

Source Data Fig. 3

Raw data of ternary phase diagrams, ACN content and IR results.

Source Data Fig. 4

Raw data of HER kinetics.

Source Data Fig. 6

Raw data of ternary phase diagrams.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, CX., Li, Z., Chen, B. et al. Self-adaptive electrolytes for fast-charging batteries. Nat Energy 10, 904–913 (2025). https://doi.org/10.1038/s41560-025-01801-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-025-01801-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing