Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monolithic gyroidal solid oxide cells by additive manufacturing

Abstract

Solid oxide cells (SOCs) efficiently interconvert chemicals and electricity. However, they are primarily confined to 2D design and fabrication technologies. Planar SOC stacks require complex multi-material components, leading to reduced compactness and high specific weight. Here we escape the 2D paradigm and adopt a true 3D design based on triply periodic minimal surface structures, enabling superior performance on gravimetric and volumetric bases. Leveraging the resolution and accuracy of additive manufacturing, we demonstrate a monolithic, gyroidal SOC that eliminates the need for metallic interconnects and sealing components. The monolith achieves optimal spatial utilization, exceptional mass-specific indexes, a straightforward manufacturing procedure and high electrochemical and thermomechanical stability. The specific power and volumetric power density surpass 1 W g−1 and 3 W cm−3 in fuel cell mode, and the mass-index and volume-index hydrogen production rates are about 7 × 10−4 Nm3 h−1 g−1 and 2 × 10−3 Nm3 h−1 cm−3 in electrolysis mode, nearly an order of magnitude enhancement compared to planar stacks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Planar vs 3D SOC.
Fig. 2: Structural characterization of the 3D SOC.
Fig. 3: 3D SOC electrochemical performance.
Fig. 4: Stability tests.
Fig. 5: Mechanical properties.

Similar content being viewed by others

Data availability

All relevant data for this work can be found in the paper and Supplementary Information. A detailed overview of the data and plots are available at https://doi.org/10.11583/DTU.28153061. Source data are provided with this paper.

References

  1. Hauch, A. et al. Recent advances in solid oxide cell technology for electrolysis. Science 370, eaba6118 (2020).

    Article  Google Scholar 

  2. Wachsman, E. D. & Lee, K. T. Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011).

    Article  Google Scholar 

  3. Guan, D. et al. Hydrogen society: from present to future. Energy Environ. Sci. 16, 4926–4943 (2023).

    Article  Google Scholar 

  4. Abdelkareem, M. A. et al. On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells. Renew. Sustain. Energy Rev. 101, 361–375 (2019).

    Article  Google Scholar 

  5. Wachsman, E. D., Marlowe, C. A. & Lee, K. T. Role of solid oxide fuel cells in a balanced energy strategy. Energy Environ. Sci. 5, 5498–5509 (2012).

    Article  Google Scholar 

  6. Hecht, M. et al. Mars Oxygen ISRU Experiment (MOXIE). Space Sci. Rev. 217, 9 (2021).

  7. Cable, T. L. & Sofie, S. W. A symmetrical, planar SOFC design for NASA’s high specific power density requirements. J. Power Sources 174, 221–227 (2007).

    Article  Google Scholar 

  8. Hoffman, J. A. et al. Mars Oxygen ISRU Experiment (MOXIE)—preparing for human Mars exploration. Sci. Adv. 8, eabp8636 (2022).

    Article  Google Scholar 

  9. ElcoStack E3000 (fuel cell). Elcogen https://elcogen.com/products/solid-oxide-stacks-for-fuel-cell-systems/ (2024).

  10. Lentatek solid oxide fuel cell (SOFC) stack. Lentatek https://www.lentatek.com/en/solutions/hydrogen-and-fuel-cell-technologies (2024).

  11. Wobogroup SOFC stacks. Wobogroup https://wobogroup.en.made-in-china.com/product/OJCpGYjynLrX/China-Fuel-Cells-100kw-High-Efficiency-Solid-Oxide-Fuel-Cell-Stack.html (2024).

  12. E&KOA SOFC stack, solid oxide fuel cell stack AERIE 120 (4kW). Hyfindr https://hyfindr.com/en/shop/products/solid-oxide-fuel-cell-stack-aerie-120 (2024).

  13. Kyocera SOFC stack. Kyocera https://global.kyocera.com/prdct/ecd/sofc/ (2024).

  14. Hayashi, K., Yokoo, M., Yoshida, Y. & Arai, H. Solid oxide fuel cell stack with high electrical efficiency. NTT Tech. Rev. 7, 14–18 (2009).

    Article  Google Scholar 

  15. De Bruijn, F. The current status of fuel cell technology for mobile and stationary applications. Green Chem. 7, 132–150 (2005).

    Article  Google Scholar 

  16. Singhal, S. C. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ion. 152-153, 405–410 (2002).

    Article  Google Scholar 

  17. Boldrin, P. & Brandon, N. P. Progress and outlook for solid oxide fuel cells for transportation applications. Nat. Catal. 2, 571–577 (2019).

    Article  Google Scholar 

  18. Du, Y. & Finnerty, C. Tubular electrochemical cell. US patent 8,182,959 B2 (2012).

  19. Tietz, F., Buchkremer, H. P. & Stöver, D. Components manufacturing for solid oxide fuel cells. Solid State Ion. 152-153, 373–381 (2002).

    Article  Google Scholar 

  20. Tarancón, A. et al. 2022 roadmap on 3D printing for energy. J. Phys. Energy 4, 011501 (2022).

    Article  Google Scholar 

  21. Maines, E. M., Porwal, M. K., Ellison, C. J. & Reineke, T. M. Sustainable advances in SLA/DLP 3D printing materials and processes. Green. Chem. 23, 6863–6897 (2021).

    Article  Google Scholar 

  22. Ribó, M. N. Vat Photopolymerization Process Chain. PhD thesis, Technical University of Denmark (2020).

  23. Yuan, J. et al. 3D printing of robust 8YSZ electrolytes with a hyperfine structure for solid oxide fuel cells. ACS Appl. Energy Mater. 6, 4133–4143 (2023).

    Article  Google Scholar 

  24. Jia, K. et al. A new and simple way to prepare monolithic solid oxide fuel cell stack by stereolithography 3D printing technology using 8 mol% yttria stabilized zirconia photocurable slurry. J. Eur. Ceram. Soc. 42, 4275–4285 (2022).

    Article  Google Scholar 

  25. Martos, A. M. et al. 3D printing of reversible solid oxide cell stacks for efficient hydrogen production and power generation. J. Power Sources 609, 234704 (2024).

    Article  Google Scholar 

  26. Minh, N. Q. Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563–588 (1993).

    Article  Google Scholar 

  27. Schoen, A. H. Infinite periodic minimal surfaces without self-intersections (NASA, 1970); https://ntrs.nasa.gov/citations/19700020472

  28. Fischer, W. & Koch, E. On 3-periodic minimal surfaces. Z. Kristallogr. Cryst. Mater. 179, 2031–2052 (1987).

    Article  MathSciNet  Google Scholar 

  29. Werner, J., Rodríguez-Calero, G., Abruña, H. & Wiesner, U. Block copolymer derived 3-D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage. Energy Environ. Sci. 11, 1261–1270 (2018).

    Article  Google Scholar 

  30. Maurel, A. et al. Toward high resolution 3D printing of shape-conformable batteries via vat photopolymerization: review and perspective. IEEE Access 9, 140654–140666 (2021).

    Article  Google Scholar 

  31. Dixit, T., Al-Hajri, E., Paul, M. C., Nithiarasu, P. & Kumar, S. High performance, microarchitected, compact heat exchanger enabled by 3D printing. Appl. Therm. Eng. 210, 118339 (2022).

    Article  Google Scholar 

  32. Pesce, A. et al. 3D printing the next generation of enhanced solid oxide fuel and electrolysis cells. J. Mater. Chem. A 8, 16926–16932 (2020).

    Article  Google Scholar 

  33. Trussler, S. Placement of reference electrode, electrolyte thickness and three-electrode cell configuration in solid oxide fuel cells: a brief review and update on experimental approach. J. Electrochem. Soc. 164, F834–F844 (2017).

    Article  Google Scholar 

  34. ElcoStack E3000 (electrolyzer). Elcogen https://elcogen.com/products/solid-oxide-stacks-for-electrolyser-systems/ (2024).

  35. E&KOA SOEC stack. Enkoa https://www.enkoa.co.kr/page/product (2024).

  36. Lira, M. et al. Large-area 3D printed electrolyte-supported reversible solid oxide cells. Electrochim. Acta 467, 143074 (2023).

    Article  Google Scholar 

  37. Zhou, Z., Nadimpalli, V. K., Pedersen, D. B. & Esposito, V. Degradation mechanisms of metal-supported solid oxide cells and countermeasures: a review. Materials 14, 3139 (2021).

    Article  Google Scholar 

  38. Monaco, F. et al. Degradation of Ni-YSZ electrodes in solid oxide cells: impact of polarization and initial microstructure on the Ni evolution. J. Electrochem. Soc. 166, F1229 (2019).

    Article  Google Scholar 

  39. Wang, Y. et al. Ni migration of Ni-YSZ electrode in solid oxide electrolysis cell: an integrated model study. J. Power Sources 516, 230660 (2021).

    Article  Google Scholar 

  40. Shang, Y. Microstructure Evolution of Ni-yttria Stabilized Zirconia Electrodes for Solid Oxide Electrolysis Cells: Experimental Characterization and Phase Field Modeling. PhD thesis, Technical University of Denmark (2024).

  41. Cui, T., Xiao, G., Yan, H., Zhang, Y. & Wang, J. Q. Numerical simulation and analysis of the thermal stresses of a planar solid oxide electrolysis cell. Int. J. Green. Energy 20, 432–444 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge DTU colleagues H. Henriksen, R. Caldogno, A. Danielak, C. Grundlach, S. Baier, S. Wang, B. Liu, L. Knudsen and E. Abdellahi for their assistance with equipment training and experiments. We acknowledge the financial support from the China Scholarship Council (grant number 202006370033, Z.Z. and V.E.), the Danish national VILLUM P2X Accelerator Program (grant number VPX-08, V.E., Z.Z., V.K.N. and D.B.P.) and the Poul Due Jensen Foundation for funding the project titled ‘Open Additive Manufacturing Initiative’ (grant number 2018-017, V.K.N. and D.B.P.) for supporting this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: V.E. and Z.Z. Methodology: Z.Z., V.E. and V.K.N. Investigation: Z.Z., A.R.L., Z.P., P.S., Y.X., Y.S., A.B., N.S., M.A., V.K.N. and J.L.N. Visualization: Z.Z., A.R.L., Z.P., V.B.T., Y.S., V.K.N. and V.E. Funding acquisition: Z.Z., V.K.N., D.B.P. and V.E. Project administration: V.E. Supervision: V.E. and V.K.N. Writing—original draft: Z.Z., V.E., P.S., V.K.N. and V.B.T. Writing—review and editing: Z.Z., V.E., V.B.T., X.S., P.S., V.K.N. and all. Resources: P.S., Y.X., A.B., P.K. and M.C.

Corresponding authors

Correspondence to Zhipeng Zhou, Venkata K. Nadimpalli or Vincenzo Esposito.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Yanhai Du, Inyoung Jang and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Notes 1 and 2, Table 1 and references.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 3

Unprocessed data.

Source Data Fig. 4

Unprocessed data.

Source Data Fig. 5

Unprocessed data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Lalwani, A.R., Sun, X. et al. Monolithic gyroidal solid oxide cells by additive manufacturing. Nat Energy 10, 962–970 (2025). https://doi.org/10.1038/s41560-025-01811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-025-01811-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing