Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cation interdiffusion control for 2D/3D heterostructure formation and stabilization in inorganic perovskite solar modules

Abstract

Inorganic perovskite solar cells could benefit from surface passivation using 2D/3D perovskite heterostructures. However, conventional spacer cations fail to exchange with the tightly bonded Cs cation in the inorganic perovskite to form 2D layers atop; or, when they do enable formation of a 2D layer, they migrate under heat, degrading device performance. Here we investigate the mechanisms behind 2D/3D heterostructure formation and stabilization. We find that 2D/3D heterostructure formation is driven by interactions between ammonium groups and [PbI6]4− octahedra. We thus incorporate electron-withdrawing fluorine to enhance inorganic–organic cation interdiffusion and promote heterostructure formation. We note that stability relies on interactions between the entire spacer cations and [PbI6]4− octahedra. We therefore introduce anchoring groups that double cation desorption energies, preventing cation migration at elevated temperatures. CsPbI3/(perfluoro-1,4-phenylene)dimethanammonium lead iodide heterostructures enable an efficiency of 21.6% and a maximum power point operating stability at 85 °C of 950 h. We demonstrate 16-cm2 modules with an efficiency of 19.8%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation, degradation and stabilization of 2D/3D perovskite heterostructures.
Fig. 2: Perovskite heterostructures and single-crystal structural X-ray diffraction structures of the 2D perovskites.
Fig. 3: Stability of 2D perovskite materials under Cs-rich environments.
Fig. 4: Stability of the 2D/3D heterostructures.
Fig. 5: Photovoltaic performance and stability.

Similar content being viewed by others

Data availability

The data that support the findings of this study are provided in Supplementary Information. Source data are provided with this paper.

References

  1. Wang, Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019).

    Article  Google Scholar 

  2. Liu, C. et al. Retarding solid-state reactions enable efficient and stable all-inorganic perovskite solar cells and modules. Sci. Adv. 9, eadg0087 (2023).

    Article  Google Scholar 

  3. Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  Google Scholar 

  4. Gu, H. et al. Phase-pure two-dimensional layered perovskite thin films. Nat. Rev. Mater. 8, 533–551 (2023).

    Article  Google Scholar 

  5. Zhao, X. et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377, 307–310 (2022).

    Article  Google Scholar 

  6. Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article  Google Scholar 

  7. Wang, Z. et al. Managing multiple halide-related defects for efficient and stable inorganic perovskite solar cells. Angew. Chem. Int. Ed. 62, e202305815 (2023).

    Article  Google Scholar 

  8. Sun, X. et al. Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell. Joule 6, 850–860 (2022).

    Article  Google Scholar 

  9. Chu, X. et al. Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nat. Energy 8, 372–380 (2023).

    Article  Google Scholar 

  10. Tan, S. et al. Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics. Angew. Chem. Int. Ed. 61, e202201300 (2022).

    Article  Google Scholar 

  11. Li, T. et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8, 610–620 (2023).

    Article  Google Scholar 

  12. Mali, S. S. et al. All-inorganic halide perovskites for air-processed “n–i–p” monolithic perovskite/organic hybrid tandem solar cells exceeding 23% efficiency. Energy Environ. Sci. 17, 1046–1060 (2024).

    Article  Google Scholar 

  13. Wang, Z. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 618, 74–79 (2023).

    Article  Google Scholar 

  14. Wang, X., Wang, Y., Chen, Y., Liu, X. & Zhao, Y. Efficient and stable CsPbI3 inorganic perovskite photovoltaics enabled by crystal secondary growth. Adv. Mater. 33, 2103688 (2021).

    Article  Google Scholar 

  15. Zhang, Z. et al. Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem. Soc. Rev. 52, 163–195 (2023).

    Article  Google Scholar 

  16. Yang, Y. et al. A thermotropic liquid crystal enables efficient and stable perovskite solar modules. Nat. Energy 9, 316–323 (2024).

    Article  Google Scholar 

  17. Liu, C. et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023).

    Article  Google Scholar 

  18. Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).

    Article  Google Scholar 

  19. Sutton, R. J. et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett. 3, 1787–1794 (2018).

    Article  Google Scholar 

  20. Heo, J. H. et al. Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p–i–n-structured CsPbI3 perovskite solar cells. Joule 6, 1672–1688 (2022).

    Article  Google Scholar 

  21. Wu, L. et al. Stabilization of inorganic perovskite solar cells with a 2D Dion–Jacobson passivating layer. Adv. Mater. 35, 2304150 (2023).

    Article  Google Scholar 

  22. Du, Y. et al. Manipulating the formation of 2D/3D heterostructure in stable high-performance printable CsPbI3 perovskite solar cells. Adv. Mater. 35, 2206451 (2023).

    Article  Google Scholar 

  23. Liu, X. et al. Organic tetrabutylammonium cation intercalation to heal inorganic CsPbI3 perovskite. Angew. Chem. Int. Ed. 60, 12351–12355 (2021).

    Article  Google Scholar 

  24. Wang, Y. et al. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations. Joule 2, 2065–2075 (2018).

    Article  Google Scholar 

  25. Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).

    Article  Google Scholar 

  26. Sutanto, A. et al. In situ analysis reveals the role of 2D perovskite in preventing thermal-induced degradation in 2D/3D perovskite interfaces. Nano Lett. 20, 3992–3998 (2020).

    Article  Google Scholar 

  27. Szabó, G. & Kamat, P. V. How cation migration across a 2D/3D interface dictates perovskite solar cell efficiency. ACS Energy Lett. 9, 193–200 (2024).

    Article  Google Scholar 

  28. Perini, C. A. R. et al. Interface reconstruction from Ruddlesden–Popper structures impacts stability in lead halide perovskite solar cells. Adv. Mater. 34, 2204726 (2022).

    Article  Google Scholar 

  29. Liu, C. et al. Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 12, 6394 (2021).

    Article  Google Scholar 

  30. Wang, Y., Zhang, T., Kan, M. & Zhao, Y. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 140, 12345–12348 (2018).

    Article  Google Scholar 

  31. Yoon, S. M. et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule 5, 183–196 (2021).

    Article  Google Scholar 

  32. Almalki, M. et al. Nanosegregation in arene-perfluoroarene π-systems for hybrid layered Dion–Jacobson perovskites. Nanoscale 14, 6771–6776 (2022).

    Article  Google Scholar 

  33. Li, X., Hoffman, J. M. & Kanatzidis, M. G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021).

    Article  Google Scholar 

  34. Sun, H. et al. Surface defects management by in situ etching with methanol for efficient inverted inorganic perovskite solar cells. Adv. Funct. Mater. 33, 2213913 (2023).

    Article  Google Scholar 

  35. Sheikh, T., Shinde, A., Mahamuni, S. & Nag, A. Possible dual bandgap in (C4H9NH3)2PbI4 2D layered perovskite: single-crystal and exfoliated few-layer. ACS Energy Lett. 3, 2940–2946 (2018).

    Article  Google Scholar 

  36. Ummadisingu, A. et al. Multi-length scale structure of 2D/3D Dion–Jacobson hybrid perovskites based on an aromatic diammonium spacer. Small 18, 2104287 (2022).

    Article  Google Scholar 

  37. Papavassiliou, G. C., Mousdis, G. A., Raptopoulou, C. P. & Terzis, A. Preparation and characterization of [C6H5CH2NH3]2PbI4, [C6H5CH2CH2SC(NH2)2]3PbI5 and [C10H7CH2NH3]PbI3 organic-inorganic hybrid compounds. Z. Naturforsch. B. 54, 1405–1409 (1999).

    Article  Google Scholar 

  38. Li, F. et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photonics 17, 478–484 (2023).

    Article  Google Scholar 

  39. Lin, L. et al. Hydrogen bonding in perovskite solar cells. Matter 7, 38–58 (2024).

    Article  Google Scholar 

  40. Abate, A. et al. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 3247–3254 (2014).

    Article  Google Scholar 

  41. Han, C. et al. Impact and role of epitaxial growth in metal halide perovskite solar cells. ACS Mater. Lett. 5, 2445–2463 (2023).

    Article  Google Scholar 

  42. Hong, H. et al. Two-dimensional lead halide perovskite lateral homojunctions enabled by phase pinning. Nat. Commun. 15, 3164 (2024).

    Article  Google Scholar 

  43. Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    Article  Google Scholar 

  44. Sidhik, S. et al. Two-dimensional perovskite templates for durable, efficient formamidinium perovskite solar cells. Science 384, 1227–1235 (2024).

    Article  Google Scholar 

  45. Liu, C. et al. Dopant-free hole transport materials afford efficient and stable inorganic perovskite solar cells and modules. Angew. Chem. Int. Ed. 60, 20489–20497 (2021).

    Article  Google Scholar 

  46. Heo, J. H. et al. Efficient and stable graded CsPbI3−xBrx perovskite solar cells and submodules by orthogonal processable spray coating. Joule 5, 481–494 (2021).

    Article  Google Scholar 

  47. Liu, C. et al. Tailoring C60 for efficient inorganic CsPbI2Br perovskite solar cells and modules. Adv. Mater. 32, 1907361 (2020).

    Article  Google Scholar 

  48. Chen, R. et al. Moisture-tolerant and high-quality α-CsPbI3 films for efficient and stable perovskite solar modules. J. Mater. Chem. A 8, 9597–9606 (2020).

    Article  Google Scholar 

  49. Heo, J. H. et al. Thermally stable inorganic CsPbI2Br mesoscopic metal halide perovskite solar submodules. ACS Appl. Mater. Interfaces 11, 43066–43074 (2019).

    Article  Google Scholar 

  50. Tan, S. et al. Constructing an interfacial gradient heterostructure enables efficient CsPbI3 perovskite solar cells and printed minimodules. Adv. Mater. 35, 2301879 (2023).

    Article  Google Scholar 

  51. Mali, S. S. et al. Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency. Nat. Energy 8, 989–1001 (2023).

    Article  Google Scholar 

  52. Liu, X. et al. CsPbI3 perovskite solar module with certified aperture area efficiency >18% based on ambient-moisture-assisted surface hydrolysis. Joule 8, 2851–2862 (2024).

    Article  Google Scholar 

  53. Zhou, Q. et al. High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4NH3)2[PbI4] capping layer. Adv. Energy Mater. 9, 1802595 (2019).

    Article  Google Scholar 

  54. Paek, S. et al. Molecular design and operational stability: toward stable 3D/2D perovskite interlayers. Adv. Sci. 7, 2001014 (2020).

    Article  Google Scholar 

  55. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  57. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  58. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

M.K.N. acknowledges support from the European Union’s Horizon 2020 research and innovation programme (number 763977). E.H.S. acknowledges support from the award 70NANB19H005 from the US Department of Commerce, National Institute of Standards and Technology, as part of the Center for Hierarchical Materials Design (CHiMaD). J.D.F. and M.G.K. acknowledge support from the National Science Foundation under grant number DMR-2019444 (National Science Foundation Center for Integration of Modern Optoelectronic Materials on Demand, IMOD, X-ray crystallographic and optical studies of 2D perovskites). I.W.G. was supported by US Department of Energy, Office of Science, Basic Energy Sciences, under award number DE-SC-0012541 (single-crystal X-ray crystal structure determination). K.R. thanks the Research Council of Lithuania via grant number S-MIP-20-20 and the funding received from the World Federation of Scientists (WFS) fellowship. This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (National Science Foundation ECCS-2025633), the IIN and Northwestern’s MRSEC programme (National Science Foundation DMR-1720139). We thank C. Ballif and C. Wolf for assisting with module measurements. We also acknowledge O.A. Syzgantseva and M.A. Syzgantseva for suggestions on theoretical calculations and C. Igci and S. Dai for support with material synthesis and characterization. A.S.R.B. acknowledges support from King Abdullah University of Science and Technology through the Ibn Rushd Postdoctoral Fellowship Award.

Author information

Authors and Affiliations

Authors

Contributions

C.L. conceived of the idea and proposed the experimental design. C.L. and Y.Y. performed the device fabrication and characterizations. A.L., Z.W., H.Z. and B.C. gave suggestions on the paper writing. J.D.F. and I.W.G. performed synthesis, physico-chemical analysis and crystallographic single-crystal analysis. C.B.M. performed DFT calculation. R.P.R., K.R., R.S. and V.G. synthesized organic halides. B.D., Y.D., L.Z., Z.W. and X.Z. helped with the device fabrication. H.C., H.W. and A.S.R.B. helped with photoluminescence (PL) measurement. N.S. performed the GIWAXS measurement. K.R., P.J.D., M.G.K., M.K.N. and E.H.S. supervised the project. C.L. wrote the first draft of the paper. All the authors contributed to the revision and comments to the paper.

Corresponding authors

Correspondence to Kasparas Rakstys, Paul J. Dyson, Mercouri G. Kanatzidis, Edward H. Sargent or Mohammad K. Nazeeruddin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Tongle Bu and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33, Tables 1–19 and Refs. 1–11.

Reporting Summary

Supplementary Data 1

Statistical source data for Supplementary Figs. 1, 7, 21 and 23.

Source data

Source Data Fig. 5

Statistical source data for Fig. 5c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yang, Y., Fletcher, J.D. et al. Cation interdiffusion control for 2D/3D heterostructure formation and stabilization in inorganic perovskite solar modules. Nat Energy 10, 981–990 (2025). https://doi.org/10.1038/s41560-025-01817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-025-01817-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing