Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Covariance of interphasic properties and fast chargeability of energy-dense lithium metal batteries

Abstract

Lithium metal batteries can achieve high energy density, alleviating range anxiety for electric vehicles. However, the rational interphase design under fast charging conditions remains difficult. Here we explore a series of pyran-based electrolytes with various substitutional anions under a fast charging condition and observe weakly Li+-associating anions facilitating uniform lithium plating under a fast charging condition. We demonstrate lithium metal batteries achieving a 5–70% state of charge (SoC) within 12 min over 350 repeated cycles at a 4C (8.4 mA cm−2) charging rate, as well as high-energy designs delivering projected energy densities of 386 Wh kg−1 reaching a 10–80% SoC within 17 min over 180 cycles. We propose that the improved fast charging performance is in tandem with the ability of the weakly Li+ associating anions to suppress inorganic species clustering within the solid–electrolyte interphase and demonstrate the potential for electrolyte advancement based on the proposed mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of state-of-the-art Li metal and Li-ion batteries.
Fig. 2: Fast charging of the Li anode using state-of-the-art electrolytes.
Fig. 3: Fast charging of the Li anode using pyran-based electrolytes with various substitutional anions.
Fig. 4: Interphase on the Li metal anode in pyran-based electrolytes with various substitutional anions.
Fig. 5: Correlation analysis.
Fig. 6: MD simulations.
Fig. 7: Practical applicability of pyran-based electrolytes.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are included within the Article and its Supplementary Information and source data. Source data are provided with this paper.

References

  1. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  Google Scholar 

  2. Tomaszewska, A. et al. Lithium-ion battery fast charging: a review. eTransportation 1, 100011 (2019).

    Article  Google Scholar 

  3. Chen, Y. et al. Origin of dendrite-free lithium deposition in concentrated electrolytes. Nat. Commun. 14, 2655 (2023).

    Article  Google Scholar 

  4. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  5. Alvarado, J. et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019).

    Article  Google Scholar 

  6. Nature EnergyRen, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

    Article  Google Scholar 

  7. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  Google Scholar 

  8. Kim, S. C. et al. High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8, 814–826 (2023).

    Article  Google Scholar 

  9. Mao, M. et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023).

    Article  Google Scholar 

  10. Zhao, Y. et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022).

    Article  Google Scholar 

  11. Holoubek, J. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021).

    Article  Google Scholar 

  12. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article  Google Scholar 

  13. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  Google Scholar 

  14. Leng, Y. et al. Fast charging of energy-dense lithium metal batteries in localized ether-based highly concentrated electrolytes. J. Electrochem. Soc. 168, 060548 (2021).

    Article  Google Scholar 

  15. Xia, Y. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023).

    Article  Google Scholar 

  16. Zheng, J. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).

    Article  Google Scholar 

  17. Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article  Google Scholar 

  18. Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).

    Article  Google Scholar 

  19. Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article  Google Scholar 

  20. Wang, C.-Y. et al. Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022).

    Article  Google Scholar 

  21. Tu, S. et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase. Nat. Energy 8, 1365–1374 (2023).

    Article  Google Scholar 

  22. Department of Energy announces $19 million for advanced battery and electrification research to enable extreme fast charging. US Department of Energy https://www.energy.gov/articles/department-energy-announces-19-million-advanced-battery-and-electrification-research-enable (2018).

  23. Wu, Z. et al. Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy 8, 340–350 (2023).

    Google Scholar 

  24. Baird, M. A., Song, J., Tao, R., Ko, Y. & Helms, B. A. Locally superconcentrated electrolytes for ultra-fast-charging lithium metal batteries with high-voltage cathodes. ACS Energy Lett. 7, 3826–3834 (2022).

    Article  Google Scholar 

  25. Boyle, D. T. et al. Resolving current-dependent regimes of electroplating mechanisms for fast charging lithium metal anodes. Nano Lett. 22, 8224–8232 (2022).

    Article  Google Scholar 

  26. Niu, C. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).

    Article  Google Scholar 

  27. Lain, M. J., Brandon, J. & Kendrick, E. Design strategies for high power vs. high energy lithium ion cells. Batteries 5, 10660–10669 (2019).

    Article  Google Scholar 

  28. Xia, S. et al. Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries. Nano Energy 53, 753–762 (2018).

    Article  Google Scholar 

  29. Tanim, T. R. et al. A comprehensive understanding of the aging effects of extreme fast charging on high Ni NMC cathode. Adv. Energy Mater. 12, 2103712 (2022).

    Article  Google Scholar 

  30. Adam, A., Wandt, J., Knobbe, E., Bauer, G. & Kwade, A. Fast-charging of automotive lithium-ion cells: in-situ lithium-plating detection and comparison of different cell designs. J. Electrochem. Soc. 167, 130503 (2020).

    Article  Google Scholar 

  31. Jurng, S., Brown, Z. L., Kim, J. & Lucht, B. L. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. 11, 2600–2608 (2018).

    Article  Google Scholar 

  32. Gu, Y. et al. Resolving nanostructure and chemistry of solid–electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy. Nat. Commun. 14, 3536 (2023).

    Article  Google Scholar 

  33. Markevich, E., Salitra, G., Chesneau, F., Schmidt, M. & Aurbach, D. Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett. 2, 1321–1326 (2017).

    Article  Google Scholar 

  34. Aurbach, D., Markevich, E. & Salitra, G. High energy density rechargeable batteries based on Li metal anodes. The role of unique surface chemistry developed in solutions containing fluorinated organic co-solvents. J. Am. Chem. Soc. 143, 21161–21176 (2021).

    Article  Google Scholar 

  35. Cheng, H. et al. High voltage electrolyte design mediated by advanced solvation chemistry toward high energy density and fast charging lithium-ion batteries. Adv. Energy Mater. 14, 2304321 (2024).

    Article  Google Scholar 

  36. Zou, Y. et al. Non-flammable electrolyte enables high-voltage and wide-temperature lithium-ion batteries with fast charging. Angew. Chem. Int. Ed. 62, e202216189 (2023).

    Article  Google Scholar 

  37. Cheng, H. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7, 490–513 (2022).

    Article  Google Scholar 

  38. Kwon, H. et al. Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion. Nat. Energy 9, 57–69 (2024).

    Article  Google Scholar 

  39. Wen, B. et al. Ultrafast ion transport at a cathode–electrolyte interface and its strong dependence on salt solvation. Nat. Energy 5, 578–586 (2020).

    Article  Google Scholar 

  40. Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694 (2009).

    Article  Google Scholar 

  41. Xiong, S., Xie, K., Diao, Y. & Hong, X. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochim. Acta 83, 78–86 (2012).

    Article  Google Scholar 

  42. Ma, B. & Bai, P. Fast charging limits of ideally stable metal anodes in liquid electrolytes. Adv. Energy Mater. 12, 2102967 (2022).

    Article  Google Scholar 

  43. Li, G. et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 3, 1076–1083 (2018).

    Article  Google Scholar 

  44. Kim, S. C. et al. Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability. J. Am. Chem. Soc. 143, 10301–10308 (2021).

    Article  Google Scholar 

  45. Seo, D. M., Borodin, O., Han, S.-D., Boyle, P. D. & Henderson, W. A. Electrolyte solvation and ionic association II. Acetonitrile–lithium salt mixtures: highly dissociated salts. J. Electrochem. Soc. 159, A1489 (2012).

    Article  Google Scholar 

  46. Younesi, R., Veith, G. M., Johansson, P., Edström, K. & Vegge, T. Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li−S. Energy Environ. Sci. 8, 1905–1922 (2015).

    Article  Google Scholar 

  47. Ushirogata, K., Sodeyama, K., Futera, Z., Tateyama, Y. & Okuno, Y. Near-shore aggregation mechanism of electrolyte decomposition products to explain solid electrolyte interphase formation. J. Electrochem. Soc. 162, A2670 (2015).

    Article  Google Scholar 

  48. Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014).

    Article  Google Scholar 

  49. Zhu, G. et al. Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature 596, 525–530 (2021).

    Article  Google Scholar 

  50. Hassan, S. A. Microscopic mechanism of nanocrystal formation from solution by cluster aggregation and coalescence. J. Chem. Phys. 134, 114508 (2011).

    Article  Google Scholar 

  51. Wynn, D. A., Roth, M. M. & Pollard, B. D. The solubility of alkali-metal fluorides in non-aqueous solvents with and without crown ethers, as determined by flame emission spectrometry. Talanta 31, 1036–1040 (1984).

    Article  Google Scholar 

  52. Lee, J., Yang, J., Kwon, S. G. & Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 1, 16034 (2016).

    Article  Google Scholar 

  53. Grammatikopoulos, P., Sowwan, M. & Kioseoglou, J. Computational modeling of nanoparticle coalescence. Adv. Theor. Simul. 2, 1900013 (2019).

    Article  Google Scholar 

  54. Jensen, P. Growth of nanostructures by cluster deposition: experiments and simple models. Rev. Mod. Phys. 71, 1695–1735 (1999).

    Article  Google Scholar 

  55. He, Z. & Alexandridis, P. Nanoparticles in ionic liquids: interactions and organization. Phys. Chem. Chem. Phys. 17, 18238–18261 (2015).

    Article  Google Scholar 

  56. Oncsik, T., Trefalt, G., Borkovec, M. & Szilagyi, I. Specific ion effects on particle aggregation induced by monovalent salts within the Hofmeister series. Langmuir 31, 3799–3807 (2015).

    Article  Google Scholar 

  57. Liu, D. et al. Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes. Nat. Energy 9, 559–569 (2024).

  58. Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article  Google Scholar 

  59. Chen, Y. et al. Trace ethylene carbonate-mediated low-concentration ether-based electrolytes for high-voltage lithium metal batteries. Energy Environ. Sci. 17, 5613–5626 (2024).

    Article  Google Scholar 

  60. Zhang, S. et al. Oscillatory solvation chemistry for a 500 Wh kg−1 Li–metal pouch cell. Nat. Energy 9, 1285–1296 (2024).

    Article  Google Scholar 

  61. Liu, Y. et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022).

    Article  Google Scholar 

  62. Niu, C. et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14, 594–601 (2019).

    Article  Google Scholar 

  63. Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

    Article  Google Scholar 

  64. Kim, M. S. et al. Langmuir–Blodgett artificial solid–electrolyte interphases for practical lithium metal batteries. Nat. Energy 3, 889–898 (2018).

    Article  Google Scholar 

  65. Liu, H. et al. Ultrahigh coulombic efficiency electrolyte enables Li||SPAN batteries with superior cycling performance. Mater. Today 42, 17–28 (2021).

    Article  Google Scholar 

  66. Han, J.-G. et al. An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes. J. Power Sources 446, 227366 (2020).

    Article  Google Scholar 

  67. Chen, K.-H. et al. Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. J. Power Sources 471, 228475 (2020).

    Article  Google Scholar 

  68. Chen, H. et al. Tortuosity effects in lithium–metal host anodes. Joule 4, 938–952 (2020).

    Article  Google Scholar 

  69. Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article  Google Scholar 

  70. Son, I. H. et al. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities. Nat. Commun. 8, 1561 (2017).

    Article  Google Scholar 

  71. Yang, X.-G. et al. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries. Joule 3, 3002–3019 (2019).

    Article  Google Scholar 

  72. Qiao, Y. et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021).

    Article  Google Scholar 

  73. Du, Z., Wood, D. L. & Belharouak, I. Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes. Electrochem. Commun. 103, 109–113 (2019).

    Article  Google Scholar 

  74. Wang, B. et al. Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 13, 2307–2315 (2019).

    Google Scholar 

  75. Kazyak, E., Chen, K.-H., Chen, Y., Cho, T. H. & Dasgupta, N. P. Enabling 4C fast charging of lithium-ion batteries by coating graphite with a solid-state electrolyte. Adv. Energy Mater. 12, 2102618 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the LG Energy Solution-KAIST Frontier Research Laboratory (2022) and the National Foundation of Korea (NRF) grant funded by the Korea Ministry of Science and ICT (grant nos. 2022M3J1A1085404 and RS-2023-00261543, H.-T.K.). We thank G.-C. Chung, K. Nam Sohn and J. Young Kim for their support and comments on the research.

Author information

Authors and Affiliations

Authors

Contributions

H. Kwon proposed the research, and H.-T.K. supervised the work. H. Kwon conducted the electrochemical tests, SEM and DFT simulations. H. Kwon and Seongyeong Kim performed and analysed the cryo-TEM, XPS and MD simulations. J.H., Y.K. and C.P. helped with the experiment design for the pouch cell test under pressurized conditions. H.E.L., S.S.K. and H. Kim contributed to the pouch cell testing fixture and pressure analysis. C.P., I.J.K., K.S. and Sejin Kim analysed the data. H. Kim and D.S. contributed to the battery design. H. Kwon and H.-T.K. co-wrote and revised the manuscript.

Corresponding author

Correspondence to Hee-Tak Kim.

Ethics declarations

Competing interests

H.-T.K. and H. Kwon declare that this work has been filed for a KR Provisional Patent Application (no. 10-2024-0091552). The other authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–67, Tables 1–4 and Notes 1–6.

Source data

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, H., Kim, S., Hyun, J. et al. Covariance of interphasic properties and fast chargeability of energy-dense lithium metal batteries. Nat Energy 10, 1132–1145 (2025). https://doi.org/10.1038/s41560-025-01838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-025-01838-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing