Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unified affinity paradigm for the rational design of high-efficiency lithium metal electrolytes

Subjects

Abstract

Electrolyte engineering breakthroughs are crucial to support extremely high-energy battery chemistries. However, the complex interplay between battery performance and electrolyte structure remains poorly understood and difficult to predict. Here we introduce the concept of ‘normalized cation/anion–solvent affinity’, which describes the critical interactions between solvents and both cations and anions. This innovative approach allows for the simultaneous and quantitative prediction of electrolyte microstructures, transport characteristics, redox behaviours and interphase characteristics. Leveraging this framework, we screened approximately 150 solvent candidates and identified electrolyte formulations that significantly improve Li metal plating/stripping Coulombic efficiency ( >99.5%). Among these, four electrolytes achieved Coulombic efficiency greater than 99.8%, while supporting the durability of aggressive high-voltage cathodes. These formulations enabled the realization of highly reversible Li metal batteries (LMBs) with a record-breaking high energy density of 600 Wh kg−1 and over 100 cycles, advancing LMBs towards practical applications. The unified affinity paradigm offers valuable insights for designing next-generation electrolytes for high-energy LMBs and other alkali-metal-ion batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Solvation structure formation mechanism and scaling relationship with the ion–solvent interaction energetics.
Fig. 2: Ion–solvent affinities for representative solvents and their use for electrolyte design.
Fig. 3: Transport behaviour of electrolyte and relationship with the ion–solvent affinities.
Fig. 4: Electrochemical redox mechanism of solvent and scaling relationship between redox potential and the charge transfer.
Fig. 5: Electrochemical performances of Li metal batteries in different electrolytes.

Similar content being viewed by others

Data availability

All data supporting the conclusions of this study are provided within the main article and its Supplementary Information files. Source data are provided with this paper.

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  2. Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, eabq3750 (2022).

    Article  Google Scholar 

  3. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    Article  Google Scholar 

  4. Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article  Google Scholar 

  5. Yao, N., Chen, X., Fu, Z.-H. & Zhang, Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem. Rev. 122, 10970–11021 (2022).

    Article  Google Scholar 

  6. Wang, H. et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6, 588–616 (2022).

    Article  Google Scholar 

  7. Rustomji, C. S. et al. Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, eaal4263 (2017).

    Article  Google Scholar 

  8. Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

    Article  Google Scholar 

  9. Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

    Article  Google Scholar 

  10. Xue, W. J. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article  Google Scholar 

  11. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  Google Scholar 

  12. Wu, L.-Q. et al. Unveiling the role of fluorination in hexacyclic coordinated ether electrolytes for high-voltage lithium metal batteries. J. Am. Chem. Soc. 146, 5964–5976 (2024).

    Article  Google Scholar 

  13. Zhang, H. et al. Cyclopentylmethyl ether, a non-fluorinated, weakly solvating and wide temperature solvent for high-performance lithium metal battery. Angew. Chem. Int. Ed. 62, e202300771 (2023).

    Article  Google Scholar 

  14. Holoubek, J. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021).

    Article  Google Scholar 

  15. Yao, Y.-X. et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2021).

    Article  Google Scholar 

  16. Wu, Z. C. et al. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 9, 650–664 (2023).

    Article  Google Scholar 

  17. Chen, S. R. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

    Article  Google Scholar 

  18. Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

    Article  Google Scholar 

  19. Zheng, J. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).

    Article  Google Scholar 

  20. Zhang, H. et al. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57, 15002–15027 (2018).

    Article  Google Scholar 

  21. Wang, Y. et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries. Chem. Soc. Rev. 52, 2713–2763 (2023).

    Article  Google Scholar 

  22. Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    Article  Google Scholar 

  23. Wang, Z. et al. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem. Soc. Rev. 50, 3178–3210 (2021).

    Article  Google Scholar 

  24. Liu, Y. et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022).

    Article  Google Scholar 

  25. Cheng, H. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7, 490–513 (2022).

    Article  Google Scholar 

  26. Su, C.-C. et al. Solvating power series of electrolyte solvents for lithium batteries. Energy Environ. Sci. 12, 1249–1254 (2019).

    Article  Google Scholar 

  27. Efaw, C. M. et al. Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22, 1531–1539 (2023).

    Article  Google Scholar 

  28. Seo, D. M. et al. Electrolyte solvation and ionic association I. acetonitrile-lithium salt mixtures: intermediate and highly associated salts. J. Electrochem. Soc. 159, A553–A565 (2012).

    Article  Google Scholar 

  29. Yu, Z. et al. Beyond local solvation structure: nanometric aggregates in battery electrolytes and their effect on electrolyte properties. ACS Energy Lett. 7, 461–470 (2022).

    Article  Google Scholar 

  30. Fadel, E. R. et al. Role of solvent-anion charge transfer in oxidative degradation of battery electrolytes. Nat. Commun. 10, 3360 (2019).

    Article  Google Scholar 

  31. Liu, Y., Sengupta, A., Raghavachari, K. & Flood, A. H. Anion binding in solution: beyond the electrostatic regime. Chem 3, 411–427 (2017).

    Article  Google Scholar 

  32. Chen, X. & Zhang, Q. Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53, 1992–2002 (2020).

    Article  Google Scholar 

  33. Ko, S. et al. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 7, 1217–1224 (2022).

    Article  Google Scholar 

  34. Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article  Google Scholar 

  35. Fan, X. L. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

    Article  Google Scholar 

  36. Fang, C., Mistry, A., Srinivasan, V., Balsara, N. P. & Wang, R. Elucidating the molecular origins of the transference number in battery electrolytes using computer simulations. JACS Au 3, 306–315 (2023).

    Article  Google Scholar 

  37. Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Article  Google Scholar 

  38. Bergstrom, H. K. & McCloskey, B. D. Ion transport in (localized) high concentration electrolytes for Li-based batteries. ACS Energy Lett. 9, 373–380 (2024).

    Article  Google Scholar 

  39. Zhang, Y., Bier, I. & Viswanathan, V. Predicting electrolyte conductivity directly from molecular-level interactions. ACS Energy Lett. 7, 4061–4070 (2022).

    Article  Google Scholar 

  40. Chen, M., Zhang, J., Ji, X., Fu, J. & Feng, G. Progress on predicting the electrochemical stability window of electrolytes. Curr. Opin. Electrochem. 34, 101030 (2022).

    Article  Google Scholar 

  41. Peljo, P. & Girault, H. H. Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ. Sci. 11, 2306–2309 (2018).

    Article  Google Scholar 

  42. Lin, S. et al. Reclaiming neglected compounds as promising solid state electrolytes by predicting electrochemical stability window with dynamically determined decomposition pathway. Adv. Energy Mater. 12, 2201808 (2022).

    Article  Google Scholar 

  43. Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

    Article  Google Scholar 

  44. Borodin, O. & Smith, G. D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. J. Phys. Chem. B 113, 1763–1776 (2009).

    Article  Google Scholar 

  45. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J.-G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    Article  Google Scholar 

  46. Kim, S. C. et al. High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8, 814–826 (2023).

    Article  Google Scholar 

  47. Moon, J. et al. Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. Nat. Commun. 13, 4538 (2022).

    Article  Google Scholar 

  48. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article  Google Scholar 

  49. Huang, Y. et al. Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries. Energy Environ. Sci. 15, 4349–4361 (2022).

    Article  Google Scholar 

  50. Zhang, Q.-K. et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).

    Article  Google Scholar 

  51. Galvez-Aranda, D. E. & Seminario, J. M. Li-metal anode in dilute electrolyte LiFSI/TMP: electrochemical stability using ab initio molecular dynamics. J. Phys. Chem. C 124, 21919–21934 (2020).

    Article  Google Scholar 

  52. Borodin, O., Behl, W. & Jow, T. R. Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. J. Phys. Chem. C 117, 8661–8682 (2013).

    Article  Google Scholar 

  53. Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. & Jorgensen, W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001).

    Article  Google Scholar 

  54. Dodda, L. S., Cabeza de Vaca, I., Tirado-Rives, J. & Jorgensen, W. L. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45, W331–W336 (2017).

    Article  Google Scholar 

  55. Jewett, A. I. et al. Moltemplate: a tool for coarse-grained modeling of complex biological matter and soft condensed matter physics. J. Mol. Biol. 433, 166841 (2021).

    Article  Google Scholar 

  56. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  Google Scholar 

  57. VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  Google Scholar 

  58. Jie, Y. et al. Towards long-life 500 Wh kg−1 lithium metal pouch cells via compact ion-pair aggregate electrolytes. Nat. Energy https://doi.org/10.1038/s41560-024-01565-z (2024).

    Article  Google Scholar 

  59. Kwon, H. et al. Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion. Nat. Energy 9, 57–69 (2024).

    Article  Google Scholar 

  60. Mao, M. et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023).

    Article  Google Scholar 

  61. Xia, Y. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023).

    Article  Google Scholar 

  62. Zhang, Y. et al. Enabling 420 Wh kg−1stable lithium-metal pouch cells by lanthanum doping. Adv. Mater. 35, 2211032 (2023).

    Article  Google Scholar 

  63. Gao, Y. et al. Effect of the supergravity on the formation and cycle life of non-aqueous lithium metal batteries. Nat. Commun. 13, 5 (2022).

    Article  Google Scholar 

  64. Shi, P. et al. Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Sci. Adv. 8, eabq3445 (2022).

    Article  Google Scholar 

  65. Niu, C. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).

    Article  Google Scholar 

  66. Qiao, Y. et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2024YFB3814300), Natural Science Foundation of Zhejiang Province (LR23B030002), National Natural Science Foundation of China (22409176 and U21A2081), Fundamental Research Funds for the Central Universities (226-2024-00075) and ‘Hundred Talents Program’ of Zhejiang University.

Author information

Authors and Affiliations

Authors

Contributions

R.L. and X.F. conceived the idea and designed the experiments. R.L. and H.Z. provided the theoretical simulations. R.L., H.Z., S.Z. and J.Z. conducted the electrochemical experiments and characterizations. Long Chen, X.X., Lixin Chen, Y.S. and T.D. participated in the scientific discussion and data analysis. Y.L., R.G., M.Y. and H.P. carried out the electrochemical test of pouch cells. R.L. and X.F. prepared the manuscript with the input of all the co-authors. All authors endorsed the final version of the manuscript.

Corresponding author

Correspondence to Xiulin Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Lynden Archer and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–55, discussion and Tables 1–9.

Source data

Source Data Fig. 1

Source data Fig. 1.

Source Data Fig. 2

Source data Fig. 2.

Source Data Fig. 3

Source data Fig. 3.

Source Data Fig. 4

Source data Fig. 4.

Source Data Fig. 5

Source data Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Zhang, H., Zhang, S. et al. Unified affinity paradigm for the rational design of high-efficiency lithium metal electrolytes. Nat Energy 10, 1155–1165 (2025). https://doi.org/10.1038/s41560-025-01842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-025-01842-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing