Abstract
Widespread interaction between meteoric (fresh) water and emerged continental crust on the early Earth may have been key to the emergence of life, although when the hydrological cycle first started is poorly constrained. Here we use the oxygen isotopic composition of dated zircon crystals from the Jack Hills, Western Australia, to determine when the hydrological cycle commenced. The analysed zircon grains reveal two periods of magmatism at 4.0–3.9 and 3.5–3.4 billion years ago characterized by oxygen isotopic compositions below mantle values (that is,18O/16O ratios <5.3 ± 0.6‰ relative to Vienna Standard Mean Ocean Water (2 s.d)). The most negative 18O/16O ratios at around 4.0 and 3.4 billion years ago are as low as 2.0‰ and –0.1‰, respectively. Using Monte Carlo simulations, we demonstrate that such isotopically light values in zircon require the interaction of shallow crustal magmatic systems with meteoric water, which must have commenced at or before 4.0 billion years ago, contemporaneous with the oldest surviving remnant of Earth’s continental crust. The emergence of continental crust, the presence of fresh water and the start of the hydrological cycle probably facilitated the development of the environmental niches required for life fewer than 600 million years after Earth’s formation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
All data necessary for evaluating the findings of this study are available via Zenodo at https://doi.org/10.5281/zenodo.10781567 (ref. 81). These data are also available within this Article and its Supplementary Information. Source data are provided with this paper.
References
Miyazaki, Y. & Korenaga, J. A wet heterogeneous mantle creates a habitable world in the Hadean. Nature 603, 86–90 (2022).
Korenaga, J. Was there land on the early Earth? Life 11, 1142 (2021).
Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001).
Trail, D. & Mccollom, T. M. Relatively oxidized fluids fed Earth’s earliest hydrothermal systems. Science 379, 582–586 (2023).
Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).
Wang, W. et al. Global-scale emergence of continental crust during the Mesoarchean–early Neoarchean. Geology 50, 184–188 (2022).
Djokic, T., VanKranendonk, M. J., Campbel, K. A., Walter, M. R. & Ward, C. R. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun. 8, 15263 (2017).
Bindeman, I. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev. Mineral. Geochem. 69, 445–478 (2008).
Eiler, J. M. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev. Mineral. Geochem. 43, 319–364 (2001).
Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005).
Bindeman, I. N. Triple oxygen isotopes in evolving continental crust, granites, and clastic sediments. Rev. Mineral. Geochem. 86, 241–290 (2021).
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 53, 469–500 (2003).
Cherniak, D. J. & Watson, E. B. Diffusion in zircon. Rev. Mineral. Geochem. 53, 113–143 (2003).
Johnson, T. E. et al. Giant impacts and the origin and evolution of continents. Nature 608, 330–335 (2022).
Liljestrand, F. L. et al. The triple oxygen isotope composition of Precambrian chert. Earth Planet. Sci. Lett. 537, 116167 (2020).
Lécuyer, C. & Allemand, P. Modelling of the oxygen isotope evolution of seawater: implications for the climate interpretation of the δ18O of marine sediments. Geochim. Cosmochim. Acta 63, 351–361 (1999).
Troch, J., Ellis, B. S., Harris, C., Bachmann, O. & Bindeman, I. N. Low-δ18O silicic magmas on Earth: a review. Earth Sci. Rev. 208, 103299 (2020).
Zakharov, D. O., Zozulya, D. R. & Rubatto, D. Low-δ18O Neoarchean precipitation recorded in a 2.67 Ga magmatic-hydrothermal system of the Keivy granitic complex, Russia. Earth Planet. Sci. Lett. 578, 117322 (2022).
Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. Earth’s earliest evolved crust generated in an Iceland-like setting. Nat. Geosci. 7, 529–533 (2014).
Kirkland, C. L. et al. Bimodality in zircon oxygen isotopes and implications for crustal melting on the early Earth. Earth Planet. Sci. Lett. 625, 118491 (2024).
Hiess, J., Bennett, V. C., Nutman, A. P. & Williams, I. S. Archaean fluid-assisted crustal cannibalism recorded by low δ18O and negative εHf(T) isotopic signatures of West Greenland granite zircon. Contrib. Mineral. Petrol. 161, 1027–1050 (2011).
Vezinet, A. et al. Hydrothermally-altered mafic crust as source for early Earth TTG: Pb/Hf/O isotope and trace element evidence in zircon from TTG of the Eoarchean Saglek Block, N. Labrador. Earth Planet. Sci. Lett. 503, 95–107 (2018).
Harrison, T. M., Bell, E. A. & Boehnke, P. Hadean zircon petrochronology. Rev. Mineral. Geochem. 83, 329–363 (2017).
Cavosie, A. J., Valley, J. W. & Wilde, S. A. in Earth’s Oldest Rocks (eds Van Krandendonk, M. J. et al.) 255–278 (Elsevier, 2019).
Wang, Q. & Wilde, S. A. New constraints on the Hadean to proterozoic history of the Jack Hills belt, Western Australia. Gondwana Res. 55, 74–91 (2018).
Compston, W. & Pidgeon, R. T. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766–769 (1986).
Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).
Cavosie, A. J., Wilde, S. A., Liu, D., Weiblen, P. W. & Valley, J. W. Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348-1576 Ma) magmatism. Precamb. Res. 135, 251–279 (2004).
Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., Evans, N. & McDonald, B. Zircon Th/U ratios in magmatic environs. Lithos 212–215, 397–414 (2015).
Harrison, T. M. in Hadean Earth 143–178 (Springer, 2020).
Bell, E. A. & Harrison, T. M. Post-Hadean transitions in Jack Hills zircon provenance: a signal of the Late Heavy Bombardment? Earth Planet. Sci. Lett. 364, 1–11 (2013).
Bell, E. A., Boehnke, P. & Harrison, T. M. Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration. Geochim. Cosmochim. Acta 191, 187–202 (2016).
Cavosie, A. J., Valley, J. W. & Wilde, S. A. Magmatic δ18O in 4400-3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 235, 663–681 (2005).
Harrison, T. M., Schmitt, A. K., McCulloch, M. T. & Lovera, O. M. Early (≥ 4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett. 268, 476–486 (2008).
Bell, E. A., Harrison, T. M., McCulloch, M. T. & Young, E. D. Early Archean crustal evolution of the Jack Hills Zircon source terrane inferred from Lu-Hf, 207Pb/206Pb, and δ18O systematics of Jack Hills zircons. Geochim. Cosmochim. Acta 75, 4816–4829 (2011).
Trail, D. et al. Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem. Geophys. Geosyst. 8, Q06014 (2007).
Bouvier, A. S. et al. Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids. Contrib. Mineral. Petrol. 163, 745–768 (2012).
Trail, D. et al. Origin and significance of Si and O isotope heterogeneities in Phanerozoic, Archean, and Hadean zircon. Proc. Natl Acad. Sci. USA 115, 10287–10292 (2018).
Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010).
Borisova, A. Y. et al. Hadean zircon formed due to hydrated ultramafic protocrust melting. Geology 50, 300–304 (2022).
Borisova, A. Y. et al. Hydrated peridotite – basaltic melt interaction part I: planetary felsic crust formation at shallow depth. Front Earth Sci. 9, 640464 (2021).
Bindeman, I. et al. Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. Terra Nova 24, 227–232 (2012).
Bindeman, I. N. & Valley, J. W. Low-δ18O rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J. Petrol. 42, 1491–1517 (2001).
Putman, A. L., Fiorella, R. P., Bowen, G. J. & Cai, Z. A global perspective on local meteoric water lines: meta-analytic insight into fundamental controls and practical constraints. Water Resour. Res. 55, 6896–6910 (2019).
Bindeman, I. N. & O’Neil, J. Earth’s earliest hydrosphere recorded by the oldest hydrothermally-altered oceanic crust: triple oxygen and hydrogen isotopes in the 4.3-3.8 Ga Nuvvuagittuq belt, Canada. Earth Planet. Sci. Lett. 586, 117539 (2022).
Jaffrés, J. B. D., Shields, G. A. & Wallmann, K. The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci. Rev. 83, 83–122 (2007).
Holmden, C. & Muehlenbachs, K. The 18O/16O ratio of 2-billion-year-old seawater inferred from ancient oceanic crust. Science 259, 1733–1736 (1993).
Pope, E. C., Bird, D. K. & Rosing, M. T. Isotope composition and volume of Earth’s early oceans. Proc. Natl Acad. Sci. USA 109, 4371–4376 (2012).
Gregory, R.T. Oxygen isotope history of seawater revisited: 3.5 billion years of the greenstone record and its implication for the stability of seawater 18O. In Stable Isotope Geochemistry: A Tribute to Samuel Epstein. Geochemical Society Special Publication 3 (eds Taylor, H. P., O'Neil, J. R. and Kaplan, I. R.) 65–76 (1991).
Tartèse, R., Chaussidon, M., Gurenko, A., Delarue, F. & Robert, F. Warm Archean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochem. Perspect. Lett. 3, 55–65 (2017).
McGunnigle, J. P. et al. Triple oxygen isotope evidence for a hot Archean ocean. Geology 50, 991–995 (2022).
Sengupta, S. & Pack, A. Triple oxygen isotope mass balance for the Earth’s oceans with application to Archean cherts. Chem. Geol. 495, 18–26 (2018).
Lu, T. Y., He, Z. Y. & Klemd, R. Identifying crystal accumulation and melt extraction during formation of high-silica granite. Geology 50, 216–221 (2022).
Korenaga, J. Hadean geodynamics and the nature of early continental crust. Precamb. Res. 359, 106178 (2021).
Hawkesworth, C. J., Cawood, P. A., Dhuime, B. & Kemp, T. I. S. Earth’s continental lithosphere through time. Annu. Rev. Earth Planet. Sci. 45, 169–198 (2017).
Van Kranendonk, M. J. et al. Elements for the origin of life on land: a deep-time perspective from the Pilbara Craton of Western Australia. Astrobiology 21, 39–59 (2021).
Stern, R. A., Bodorkos, S., Kamo, S. L., Hickman, A. H. & Corfu, F. Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand. Geoanal. Res. 33, 145–168 (2009).
Johnson, C. M. et al. Early Archean biogeochemical iron cycling and nutrient availability: new insights from a 3.5 Ga land-sea transition. Earth Sci. Rev. 228, 103992 (2022).
He, H. et al. A mineral-based origin of Earth’s initial hydrogen peroxide and molecular oxygen. Proc. Natl Acad. Sci. USA 120, e2221984120 (2023).
Li, X.-H. et al. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem. Geophys. Geosyst. 10, Q04010 (2009).
Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).
Black, L. P. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205, 115–140 (2004).
Wiedenbeck, M. et al. Further characterisation of the 91500 Zircon crystal. Geostand. Geoanal. Res. 28, 9–39 (2004).
Zhao, W. et al. Long-term reproducibility of SIMS zircon U-Pb geochronology. J. Earth Sci. 33, 17–24 (2022).
Stacey, J. S. & Kramers, J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221 (1975).
Ludwig, K. R. Isoplot 3.0. A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center, 2003).
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004).
Olierook, H. K. H. et al. Regional zircon U-Pb geochronology for the Maniitsoq region, southwest Greenland. Sci. Data 8, 139 (2021).
Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518 (2011).
Li, X.-H. et al. Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb Age. Geostand. Geoanal. Res. 34, 117–134 (2010).
Baertschi, P. Absolute 18O content of standard mean ocean water. Earth Planet. Sci. Lett. 31, 341–344 (1976).
Ávila, J. N. et al. High-precision, high-accuracy oxygen isotope measurements of zircon reference materials with the SHRIMP-SI. Geostand. Geoanal. Res. 44, 85–102 (2020).
Liebmann, J., Kirkland, C. L., Cliff, J. B., Spencer, C. J. & Cavosie, A. J. Strategies towards robust interpretations of in situ zircon oxygen isotopes. Geosci. Front. 14, 101523 (2023).
Pidgeon, R. T., Nemchin, A. A. & Cliff, J. Interaction of weathering solutions with oxygen and U-Pb isotopic systems of radiation-damaged zircon from an Archean granite, Darling Range Batholith, Western Australia. Contrib. Mineral. Petrol. 166, 511–523 (2013).
Van Kranendonk, M. J., Kirkland, C. L. & Cliff, J. Oxygen isotopes in Pilbara Craton zircons support a global increase in crustal recycling at 3.2 Ga. Lithos 228–229, 90–98 (2015).
Nasdala, L. et al. Metamictisation of natural zircon: accumulaton versus thermal annealing of radioactivity-induced damage. Contrib. Mineral. Petrol. 141, 125–144 (2001).
Anderson, A. J., Hanchar, J. M., Hodges, K. V. & van Soest, M. C. Mapping radiation damage zoning in zircon using Raman spectroscopy: implications for zircon chronology. Chem. Geol. 538, 119494 (2020).
Murakami, T., Chakoumakos, B., Ewing, R. C., Lumpkin, G. R. & Weber, R. J. Alpha-decay event damage in zircon. Am. Mineral. 76, 1510–1532 (1991).
Resentini, A. et al. Zircon as a provenance tracer: coupling Raman spectroscopy and U–Pb geochronology in source-to-sink studies. Chem. Geol. 555, 119828 (2020).
Liebmann, J., Spencer, C. J., Kirkland, C. L., Xia, X.-P. & Bourdet, J. Effect of water on δ18O in zircon. Chem. Geol. 574, 120243 (2021).
Gamaleldien, H. Supplementary datasets for manuscript “Onset of the Earth’s hydrological cycle four billion years ago or earlier”. Zenodo https://doi.org/10.5281/zenodo.10781567 (2024).
Spaggiari, C. V., Pidgeon, R. T. & Wilde, S. A. The Jack Hills greenstone belt, Western Australia. Part 2: lithological relationships and implications for the deposition of ≥4.0 Ga detrital zircons.Precambr. Res. 155, 261–287 (2007).
Acknowledgements
We thank J. Beardmore for assisting with the field trip, and SinoSteel Australia Pty Ltd for providing field accommodation. We are grateful to A. Schmitt, Y. Liu, G.-Q. Tang, X.-X.-X. Ling and J. Li for help during SIMS analyses. Financial support from the National Natural Science Foundation of China (grant number 42225301 to Q.-L.L.), the Australian Research Council (grant numbers FL150100133 to Z.-X.L. and DP200101104 to T.E.J.) and an Australian Government RTP Scholarship (to S.M.) is acknowledged. This is a contribution to IGCP 648: Supercontinent Cycles and Global Geodynamics.
Author information
Authors and Affiliations
Contributions
H.G. generated the idea, interpreted the data, prepared the figures and wrote the first draft of the manuscript. H.G., Z.-X.L. and S.A.W. did the fieldwork and collected the samples. H.G. and H.K.H.O. prepared and imaged the zircon mounts. H.G., T.E.J. and U.K. performed the statistical analysis of the data. H.G. and S.M. undertook Raman spectroscopic analyses. L.-G.W., Q.-L.L. and X.-H.L. performed the SIMS O isotope and U–Pb analyses. C.K. and. H.G. carried out the SIMS O isotope and U–Pb LA–ICPMS analyses at Curtin University. H.K.H.O. and Q.J. performed the Monte Carlo simulations. All authors participated in the preparation of the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Anastassia Borisova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Alison Hunt and James Super, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Geological map of the Jack Hills belt.
Basemap adapted with permission from ref. 24, Elsevier. Data on the position of the Cargarah Shear Zone are from ref. 82. Map created using ArcGIS Desktop 10.7 final-Curtin University licensed version (https://www.arcgis.com/home/index.html).
Extended Data Fig. 2 Cathodoluminescence (CL) and Reflected light (RL) images.
Representative CL and RL images of Jack Hills zircon grains for the two studied samples (a) 21JH-A01 and (b) 21JH-B01 showing the age, δ18O value, and Th/U ratio. The red and blue circles represent the SIMS spot locations for O and U-Pb analyses.
Extended Data Fig. 3 Jack Hills zircon U-Pb age.
The U-Pb age distribution using the histogram and probability density plot of all studied zircons from (a) sample 21JH-A01 and (b) sample 21JH-B01.
Extended Data Fig. 4 Jack Hills zircon δ18O (‰) versus age (Ma) for all analysed individual magmatic grains.
The horizontal grey band shows the δ18O values of mantle zircon (5.3 ± 0.6 ‰, 2 SD)10. Uncertainties on individual data points are 2 s.d. (a) Sample 21JH-A01 (n = 672 analyses) and (b) Sample 21JH-B01 (n = 700 analyses). Red circles in panel B represent the SIMS analyses did at Curtin University.
Extended Data Fig. 5 Jack Hills zircon δ18O (‰) versus age (Ma) for individual magmatic grains.
All data in this study have been filtered for <5% U–Pb discordance (n = 1052). Previous Jack Hills data are from references23,29,30,31,32,33,34,35. The horizontal grey band shows the δ18O values of mantle zircon (5.3 ± 0.6 ‰, 2 s.d.)10. The vertical light blue bands show the two main zones of light δ18O values with excursions at ~ 4.02 Ga and ~3.40 Ga. Uncertainties on individual data points are at 2 s.d. U–Pb age data are show as kernel density (light pink) and histogram plot. The right panel of the figure shows a histogram and kernel density plot (orange) of the δ18O values of Jack Hills zircon.
Extended Data Fig. 6 Representative CL and RL images of zircon grains from Jack Hills zircon showing sub-mantle δ18O ( < 4.7 ‰) values.
CL and RL images of Jack Hills zircon grains for the two studied samples (a) 21JH-A01 and (b) 21JH-B01. The red circles represent the SIMS O isotopes and Raman spot locations, whereas the blue circles represent the SIMS spot locations for U–Pb analyses. The age, δ18O values, Th/U ratio, and FWHM values (cm−1) are shown below each image.
Extended Data Fig. 7 Jack Hills zircon δ18O (‰) versus U (ppm), Th/U ratio, and discordance percentage for samples 21JH-A01 and 21JH-B01.
(a, b) δ18O vs. U content. (c, d) δ18O vs. Th/U ratio. (e, f) δ18O vs. discordance % (expressed as the percentage difference between the 206 Pb/238U versus 207 Pb/206 Pb age). The filtered analyses (n = 498 for sample 21JH–A01 and n = 388 for sample 21JH–B01; total = 886). Red circles in panel B (21JH-B01) represent the SIMS analyses did at Curtin University.
Extended Data Fig. 8 Raman spectroscopic spectra and zircon δ18O (‰), U (ppm), Th/U ratio, and discordance percentage.
(a) Raman spectra for representative grains including the zircon standards. (b-e) FWHM values (cm–1) versus δ18O (‰), U contents, Th/U ratios, and discordance percentage show no correlation and support a primary origin for the signatures of these zircons.
Extended Data Fig. 10 Jack Hills zircon δ18O (‰) versus age (Ma) with statistical mean analysis.
All data is shown and treated as in Fig. 1 (n = 1052). Data are presented as a running average with respective standard deviations (+/– s.d.) in red. The green and blue lines show the 0.95/0.05 and 0.9/0.1 quantiles of the data, respectively. Below the main graphs, the standard deviation, and the difference between the 0.95 and 0.05 and between 0.9 and 0.1 quantiles are shown versus age. In order to assess the influence of bin size and step length, two examples with bin sizes of (a)100 and 50 Ma and step lengths of (b) 50 and 10 Ma are shown, respectively.
Supplementary information
Supplementary Data 1
Supplementary Tables 1–4.
Source data
Source Data Fig. 1
Previously published Jack Hills zircon oxygen isotope data with <5% discordance.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gamaleldien, H., Wu, LG., Olierook, H.K.H. et al. Onset of the Earth’s hydrological cycle four billion years ago or earlier. Nat. Geosci. 17, 560–565 (2024). https://doi.org/10.1038/s41561-024-01450-0
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41561-024-01450-0
This article is cited by
-
Oxygen isotope shifts reveal fluid-fluxed melting in continental anatexis
Communications Earth & Environment (2025)
-
Silicon isotopic signatures of granitoids support increased weathering of subaerial land 3.7 billion years ago
Communications Earth & Environment (2025)
-
An exogenic to endogenic thermal transition on Earth 3.9 billion years ago
Communications Earth & Environment (2025)
-
Onset of the Earth’s hydrological cycle four billion years ago or earlier
Nature Geoscience (2024)