Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Decline in atmospheric nitrogen deposition in China between 2010 and 2020

A Publisher Correction to this article was published on 15 July 2024

This article has been updated

Abstract

The deposition of atmospheric nitrogen sourced from emissions has broad environmental consequences, but long-term measurements of recent air pollution control and nitrogen management effectiveness in China are rare. Here we report measurements from a ground-based monitoring network that show a 14% decline in the rate of nitrogen deposition over China from 2010 to 2020, including a 34% decrease in oxidized nitrogen (mainly industrial) and a 10% decline in reduced nitrogen (mostly agricultural) with larger declines over eastern China. The increasing ratio of reduced to oxidized nitrogen deposition (from 1.5 to 2.0 between 2010 and 2020) underscores the need for effective agricultural nitrogen management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in Nr deposition over China between 2010 and 2020.
Fig. 2: Changes in N deposition in different regions between 2010 and 2020.

Similar content being viewed by others

Data availability

All data supporting the findings of this paper are available within the manuscript, and source data can be obtained via Figshare at https://doi.org/10.6084/m9.figshare.24647514 (ref. 57).

Code availability

The GEOS-Chem model code is open source and available via Zenodo at https://doi.org/10.5281/zenodo.3676008 (ref. 58).

Change history

References

  1. Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).

    Article  CAS  Google Scholar 

  2. Liu, L. et al. Global wet-reduced nitrogen deposition derived from combining satellite measurements with output from a chemistry transport model. J. Geophys. Res. Atmos. 126, e2020JD033977 (2021).

    Article  CAS  Google Scholar 

  3. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  4. Liu, X. et al. in Atmospheric Reactive Nitrogen in China: Emission, Deposition and Environmental Impacts (eds Liu, X. & Du, E.) 41–65 (Springer Singapore, 2020).

  5. Liu, L. et al. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc. Natl Acad. Sci. USA 119, e2121998119 (2022).

    Article  CAS  Google Scholar 

  6. Xu, W. et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmos. Chem. Phys. 15, 12345–12360 (2015).

    Article  CAS  Google Scholar 

  7. Liu, L. et al. Modeling global oceanic nitrogen deposition from food systems and its mitigation potential by reducing overuse of fertilizers. Proc. Natl Acad. Sci. USA 120, e2221459120 (2023).

    Article  CAS  Google Scholar 

  8. Wen, Z. et al. Changes of nitrogen deposition in China from 1980 to 2018. Environ. Int. 144, 106022 (2020).

    Article  CAS  Google Scholar 

  9. Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).

    Article  CAS  Google Scholar 

  10. Zhao, Y. et al. Decline in bulk deposition of air pollutants in China lags behind reductions in emissions. Nat. Geosci. 15, 190–195 (2022).

    Article  CAS  Google Scholar 

  11. Zhu, H. et al. The response of nitrogen deposition in china to recent and future changes in anthropogenic emissions. J. Geophys. Res. Atmos. 127, e2022JD037437 (2022).

    Article  Google Scholar 

  12. Liu, L. et al. Fall of oxidized while rise of reduced reactive nitrogen deposition in China. J. Cleaner Prod. 272, 122875 (2020).

    Article  CAS  Google Scholar 

  13. Li, Y. et al. Increasing importance of deposition of reduced nitrogen in the United States. Proc. Natl Acad. Sci. USA 113, 5874–5879 (2016).

    Article  CAS  Google Scholar 

  14. Kang, J. et al. Ammonia mitigation campaign with smallholder farmers improves air quality while ensuring high cereal production. Nat. Food 4, 751–761 (2023).

    Article  CAS  Google Scholar 

  15. Liu, L. Urbanization is reshaping food production in China. Nature 621, 42 (2023).

    Article  CAS  Google Scholar 

  16. Zhang, L., Wright, L. P. & Asman, W. A. H. Bi-directional air-surface exchange of atmospheric ammonia: a review of measurements and a development of a big-leaf model for applications in regional-scale air-quality models. J. Geophys. Res. Atmos. 115, 898–907 (2010).

    Article  Google Scholar 

  17. Liu, L. et al. Global estimates of dry ammonia deposition inferred from space-measurements. Sci.Total Environ. 730, 139189 (2020).

    Article  CAS  Google Scholar 

  18. Zhao, Y. et al. Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmos. Environ. 153, 32–40 (2017).

    Article  CAS  Google Scholar 

  19. Zhang, L. et al. Nitrogen deposition to the United States: distribution, sources, and processes. Atmos. Chem. Phys. 12, 4539–4554 (2012).

    Article  CAS  Google Scholar 

  20. Zhang, Y. et al. Atmospheric organic nitrogen deposition in China. Atmos. Environ. 46, 195–204 (2012).

    Article  Google Scholar 

  21. Marais, E. A. et al. UK ammonia emissions estimated with satellite observations and GEOS-Chem. J. Geophys. Res. Atmos. 126, e2021JD035237 (2021).

    Article  CAS  Google Scholar 

  22. Gong, P. et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. (Beijing) 64, 370–373 (2019).

    Article  Google Scholar 

  23. Henze, D. K., Seinfeld, J. H. & Shindell, D. T. Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem. Atmos. Chem. Phys. Discuss. 9, 5877–5903 (2009).

    Article  CAS  Google Scholar 

  24. Xu, W. et al. Spatial-temporal patterns of inorganic nitrogen air concentrations and deposition in eastern China. Atmos. Chem. Phys. 18, 10931–10954 (2018).

    Article  CAS  Google Scholar 

  25. Zhang, L. et al. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. Atmos. Chem. Phys. 18, 339–355 (2018).

    Article  CAS  Google Scholar 

  26. Zhu, L. et al. Sources and impacts of atmospheric NH3: current understanding and frontiers for modeling, measurements, and remote sensing in North America. Curr. Pollut. Rep. 1, 95–116 (2015).

    Article  CAS  Google Scholar 

  27. Cao, H. et al. 4D-Var inversion of European NH3 emissions using CrIS NH3 measurements and GEOS-Chem adjoint with bi-directional and uni-directional flux schemes. J. Geophys. Res. Atmos. 127, e2021JD035687 (2022).

    Article  CAS  Google Scholar 

  28. Zhu, L. et al. Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes. Atmos. Chem. Phys. 15, 12823–12843 (2015).

    Article  CAS  Google Scholar 

  29. Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochem. Cycles 33, 100–107 (2019).

    Article  CAS  Google Scholar 

  30. Zhao, Y., Zhang, L., Tai, A. P. K., Chen, Y. & Pan, Y. Responses of surface ozone air quality to anthropogenic nitrogen deposition in the Northern Hemisphere. Atmos. Chem. Phys. 17, 9781–9796 (2017).

    Article  CAS  Google Scholar 

  31. Zhao, Y. et al. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution. Atmos. Chem. Phys. 15, 10905–10924 (2015).

    Article  CAS  Google Scholar 

  32. Liu, L. et al. Dry particulate nitrate deposition in China. Environ. Sci. Technol. 51, 5572–5581 (2017).

    Article  CAS  Google Scholar 

  33. Pan, Y., Wang, Y., Tang, G. & Wu, D. Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China. Atmos. Chem. Phys. 12, 6515–6535 (2012).

    Article  CAS  Google Scholar 

  34. Pan, Y., Wang, Y., Tang, G. & Wu, D. Spatial distribution and temporal variations of atmospheric sulfur deposition in northern China: insights into the potential acidification risks. Atmos. Chem. Phys. 13, 1675–1688 (2013).

    Article  Google Scholar 

  35. Rodhe, H., Dentener, F. & Schulz, M. The global distribution of acidifying wet deposition. Environ. Sci. Technol. 36, 4382–4388 (2002).

    Article  CAS  Google Scholar 

  36. Wu, S. et al. Why are there large differences between models in global budgets of tropospheric ozone? J. Geophys. Res. Atmos. 112, D5 (2007).

    Article  Google Scholar 

  37. Li, M. et al. Anthropogenic emission inventories in China: a review. Natl Sci. Rev. 4, 834–866 (2017).

    Article  CAS  Google Scholar 

  38. Zheng, B. et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18, 14095–14111 (2018).

    Article  CAS  Google Scholar 

  39. Yang, Y. et al. Improved global agricultural crop- and animal-specific ammonia emissions during 1961–2018. Agric. Ecosyst. Environ. 344, 108289 (2023).

    Article  CAS  Google Scholar 

  40. Xu, H., Liu, S., Ding, J., Wang, J. & Liu, L. Mapping crop-specific emission factors highlights hotspots of ammonia mitigation in China. Sci. Total Environ. 908, 168157 (2024).

    Article  CAS  Google Scholar 

  41. Xu, W., Zhang, L. & Liu, X. A database of atmospheric nitrogen concentration and deposition from the nationwide monitoring network in China. Sci. Data 6, 51 (2019).

    Article  Google Scholar 

  42. Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227 (2018).

    Article  Google Scholar 

  43. Zhang, X. et al. Ammonia emissions may be substantially underestimated in China. Environ. Sci. Technol. 51, 12089–12096 (2017).

    Article  CAS  Google Scholar 

  44. Streets, D. G. et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. Atmos. 108, 30–31 (2003).

    Article  Google Scholar 

  45. Wang, S., Liao, Q., Hu, Y. & Yan, X. A preliminary inventory of NH3-N emission and its temporal and spatial distribution of China. J. Agro Environ. Sci. 28, 619–626 (2009).

    CAS  Google Scholar 

  46. Dong, W. X., Xing, J. & Wang, S. X. Temporal and spatial distribution of anthropogenic ammonia emissions in China: 1994–2006. Huanjing Kexue 31, 1457–1463 (2010).

    Google Scholar 

  47. Kurokawa, J. & Ohara, T. Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3. Atmos. Chem. Phys. 20, 12761–12793 (2020).

    Article  CAS  Google Scholar 

  48. Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013).

    Article  Google Scholar 

  49. Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    Article  CAS  Google Scholar 

  50. Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C. & Koshak, W. J. Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data. J. Geophys. Res. Atmos. 117, D20 (2012).

    Article  Google Scholar 

  51. Price, C. & Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. Atmos. 97, 9919–9933 (1992).

    Article  Google Scholar 

  52. Zhang, Q. et al. NOx emission trends for China, 1995–2004: the view from the ground and the view from space. J. Geophys. Res. Atmos. 112, D22 (2007).

    Article  Google Scholar 

  53. Klimont, Z. et al. Projections of SO2, NOx, NH3 and VOC emissions in East Asia up to 2030. Water Air Soil Pollut. 130, 193–198 (2001).

    Article  Google Scholar 

  54. Olivier, J. G. J. et al. Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distributionof key sources in 2000. Environ. Sci. 2, 81–99 (2005).

    Article  Google Scholar 

  55. Zhao, B. et al. NOx emissions in China: historical trends and future perspectives. Atmos. Chem. Phys. 13, 9869–9897 (2013).

    Article  Google Scholar 

  56. Zheng, M. et al. Simulations of 7Be and 10Be with the GEOS-Chem global model v14.0.2 using state-of-the-art production rates. Geosci. Model Dev. 16, 7037–7057 (2023).

    Article  CAS  Google Scholar 

  57. Liu, L., Wen, Z., Liu, S., Zhang, X. & Liu, X. N deposition datasets in China. Figshare https://doi.org/10.6084/m9.figshare.24647514 (2024).

  58. International GEOS-Chem Community geoschem/geos-chem: GEOS-Chem 12.7.1. Zenodo https://doi.org/10.5281/zenodo.3676008 (2020).

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (42371324 and 42277097), the Chinese State Key Research and Development Programme (2023YFD1900604 and 2017YFD0200101) and the High-level Team Project of China Agricultural University (X.L.). The analysis in this study is supported by the Supercomputing Center of Lanzhou University.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and X.L. designed the research; L.L., S.L. and Z.W. wrote the draft; L.L., Z.W., X.Z. and S.L. performed the analysis and prepared the figures and all co-authors contributed to the text and interpretation of the results.

Corresponding authors

Correspondence to Lei Liu or Xuejun Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Frank Berendse, David Fowler, Chaoqing Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Xujia Jiang, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Changes in contributions of dry and wet Nr deposition in China between 2010 and 2020.

a, ratio of dry to wet N deposition; b, ratio of dry to total N deposition.

Extended Data Fig. 2 The flowchart of this study.

We first collected N deposition measurements, and calculated trends in N deposition at the site and regional levels. Subsequently, we calculated national N deposition trends using GEOS-Chem driven by N emission datasets and explore the emission-deposition relationship by making sensitivity analysis. Notably, the major sources of agricultural NH3 and industrial NOx are shown in this figure, while in fact other sources (such as lightning, agricultural soil NOx emissions and NH3 from NH3 synthesis plants) can also contribute to Nr emissions.

Extended Data Fig. 3 Changes in average N deposition (kg N ha−1 yr−1) in China between 2010 and 2020 based on the GEOS-Chem.

(a) Total Nr deposition; (b) NHx deposition; (c) NOy deposition; (d) Ratio of NHx to NOy deposition (based on N).

Extended Data Fig. 4 Comparisons of Nr deposition budgets (Tg N yr−1) among China, USA and Western Europe.

(a-c) Total Nr deposition; (d-f) NHx deposition; (g-i) NOy deposition.

Extended Data Fig. 5 Comparisons of average Nr deposition (kg N ha−1 yr−1) among China, USA and Western Europe.

(a-c) Total Nr deposition; (d-f) NHx deposition; (g-i) NOy deposition.

Extended Data Fig. 6 Avoidable N fertilizer without affecting current yields.

(a) Spatial distribution of overused N fertilizer for major crops; (b) Average percentage of the attainable yield achieved by wheat, maize, and rice.

Extended Data Table 1 The sensitivity analysis of the responses of N deposition to emission changes (1 Tg N or S yr−1) by the Monte Carlo Method
Extended Data Table 2 Changes in N deposition (kg N ha−1 yr−1) for six geographical regions

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wen, Z., Liu, S. et al. Decline in atmospheric nitrogen deposition in China between 2010 and 2020. Nat. Geosci. 17, 733–736 (2024). https://doi.org/10.1038/s41561-024-01484-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-024-01484-4

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene