Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Widespread longitudinal snow dunes in Antarctica shaped by sintering

Abstract

The surface of Antarctica is continuously shaped by erosion, blowing snow and deposition, resulting in diverse aeolian bedforms akin to those observed in subtropical sand deserts. However, although dunes are universally recognized as a climate and environmental proxy, the properties of snow dunes are not well understood. Here, using satellite images covering most of Antarctica, we report the widespread occurrence (>95% of the area studied) of linear dunes that are between 100 and 1,000 m in length and aligned with the local resultant snow drift direction (61% are longitudinal dunes). On the basis of sand dune theory, we suggest that these snow dunes grow by elongation, often under unidirectional wind regimes. The predominance of the elongating mode indicates a low availability of mobile snow particles. This limited availability prevails at the continental scale due to a subtle balance between snow sintering, which limits erosion, and strong winds, which rapidly remove snowfall. These characteristics result from specific meteorological conditions that distinguish Antarctica from other snow-covered regions, and may shift with future climate changes. We suggest that snow sintering not only influences Antarctic aeolian landform evolution but also regulates the amount of snow sublimated during transport, an uncertain term in the ice-sheet mass balance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photographs and satellite images of typical snow bedforms found in Antarctica with wind direction.
Fig. 2: Dune orientations and wind direction.
Fig. 3: Spatial distribution of the mode and comparison with the observations.

Similar content being viewed by others

Data availability

The ERA5 reanalysis hourly data on single levels from 1940 to the present are available from the Copernicus Climate Data Store at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview. The Sentinel-2 data are available from the Copernicus Data Space Ecosystem repository at https://dataspace.copernicus.eu/. The Landsat 8 data are available from the US Geological Survey online repository at https://earthexplorer.usgs.gov/. The datasets generated during the current study are available from the Earth System Data Repository at https://doi.org/10.57932/720db223-3073-465b-a427-d5742235dcfe.

References

  1. Doumani, G. A. Surface structures in snow. In Proc. Conference on the Physics of Snow and Ice Vol. 1 (ed. Ôura, H.) 1119–1136 (Institute of Low Temperature Science, 1967).

  2. Frezzotti, M., Gandolfi, S., Marca, F. L. & Urbini, S. Snow dunes and glazed surfaces in Antarctica: new field and remote-sensing data. Ann. Glaciol. 34, 81–88 (2002).

    Google Scholar 

  3. Watanabe, O. Distribution of surface features of snow cover in Mizuho Plateau. Mem. Natl Inst. Polar Res. Spec. Issue 7, 44–62 (1978).

    Google Scholar 

  4. Mather, K. B. Further observations on sastrugi, snow dunes and the pattern of surface winds in Antarctica. Polar Rec. 11, 158–171 (1962).

    Google Scholar 

  5. Kobayashi, S. & Ishida, T. Interaction between wind and snow surface. Boundary Layer Meteorol. 16, 35–47 (1979).

    Google Scholar 

  6. Filhol, S. & Sturm, M. Snow bedforms: a review, new data, and a formation model. J. Geophys. Res. Earth Surf. 120, 1645–1669 (2015).

    Google Scholar 

  7. Lancaster, N. Geomorphology of Desert Dunes (Cambridge Univ. Press, 2023).

  8. Best, J. The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2004JF000218 (2005).

  9. Rubanenko, L., Lapôtre, M. G. A., Ewing, R. C., Fenton, L. K. & Gunn, A. A distinct ripple-formation regime on Mars revealed by the morphometrics of barchan dunes. Nat. Commun. 13, 7156 (2022).

    CAS  Google Scholar 

  10. Telfer, M. W. et al. Dunes on Pluto. Science 360, 992–997 (2018).

    CAS  Google Scholar 

  11. Bordiec, M. et al. Sublimation waves: geomorphic markers of interactions between icy planetary surfaces and winds. Earth Sci. Rev. 211, 103350 (2020).

    Google Scholar 

  12. Okuhira, F. et al. A study of formation of a surface snow layer. Mem. Natl Inst. Polar Res. Spec. issue 7, 140–153 (1978).

    Google Scholar 

  13. Dadic, R., Mott, R., Horgan, H. J. & Lehning, M. Observations, theory, and modeling of the differential accumulation of Antarctic megadunes. J. Geophys. Res. Earth Surf. 118, 2343–2353 (2013).

    Google Scholar 

  14. Traversa, G., Fugazza, D. & Frezzotti, M. Megadunes in Antarctica: migration and characterization from remote and in situ observations. Cryosphere 17, 427–444 (2023).

    Google Scholar 

  15. Goodwin, I. D. Snow accumulation and surface topography in the katabatic zone of eastern Wilkes Land, Antarctica. Antarct. Sci. 2, 235–242 (1990).

    Google Scholar 

  16. Picard, G., Arnaud, L., Caneill, R., Lefebvre, E. & Lamare, M. Observation of the process of snow accumulation on the Antarctic Plateau by time lapse laser scanning. Cryosphere 13, 1983–1999 (2019).

    Google Scholar 

  17. Vignon, E. et al. Stable boundary-layer regimes at Dome C, Antarctica: observation and analysis. Q. J. R. Meteorol. Soc. 143, 1241–1253 (2017).

    Google Scholar 

  18. Weller, G. The heat and mass balance of snow dunes on the central Antarctic plateau. J. Glaciol. 8, 277–284 (1969).

    Google Scholar 

  19. Amory, C. et al. Seasonal variations in drag coefficient over a sastrugi-covered snowfield in coastal East Antarctica. Boundary Layer Meteorol. 164, 107–133 (2017).

    Google Scholar 

  20. Corbett, J. & Su, W. Accounting for the effects of sastrugi in the CERES clear-sky Antarctic shortwave angular distribution models. Atmos. Meas. Tech. 8, 3163–3175 (2015).

    Google Scholar 

  21. Fraser, A. D. et al. Drivers of ASCAT C band backscatter variability in the dry snow zone of Antarctica. J. Glaciol. 62, 170–184 (2016).

    Google Scholar 

  22. Ekaykin, A. et al. Non-climatic signal in ice core records: lessons from Antarctic megadunes. Cryosphere 10, 1217–1227 (2016).

    Google Scholar 

  23. Zuhr, A. M., Münch, T., Steen-Larsen, H. C., Hörhold, M. & Laepple, T. Local-scale deposition of surface snow on the Greenland ice sheet. Cryosphere 15, 4873–4900 (2021).

    Google Scholar 

  24. Wasson, R. J. & Hyde, R. Factors determining desert dune type. Nature 304, 337–339 (1983).

    Google Scholar 

  25. Gao, X. Phase diagrams of dune shape and orientation depending on sand availability. Sci. Rep. 5, 14677 (2015).

    CAS  Google Scholar 

  26. Courrech du Pont, S., Narteau, C. & Gao, X. Two modes for dune orientation. Geology 42, 743–746 (2014).

    Google Scholar 

  27. Lü, P. et al. Direct validation of dune instability theory. Proc. Natl Acad. Sci. USA 118, e2024105118 (2021).

    Google Scholar 

  28. Rubin, D. M. & Hesp, P. A. Multiple origins of linear dunes on Earth and Titan. Nat. Geosci. 2, 653–658 (2009).

    CAS  Google Scholar 

  29. Herrmann, H. J., Durán, O., Parteli, E. J. R. & Schatz, V. Vegetation and induration as sand dunes stabilizators. J. Coast. Res. 24, 1357–1368 (2008).

    Google Scholar 

  30. Méndez Harper, J. S. et al. Electrification of sand on Titan and its influence on sediment transport. Nat. Geosci. 10, 260–265 (2017).

    Google Scholar 

  31. King, J. C. & Turner, J. Antarctic Meteorology and Climatology (Cambridge Univ. Press, 1997).

  32. Lucas, A. et al. Sediment flux from the morphodynamics of elongating linear dunes. Geology 43, 1027–1030 (2015).

    Google Scholar 

  33. Lancaster, N. Linear dunes. Prog. Phys. Geogr. Earth Environ. 6, 475–504 (1982).

    Google Scholar 

  34. Radebaugh, J. et al. Dunes on Titan observed by Cassini radar. Icarus 194, 690–703 (2008).

    Google Scholar 

  35. Amory, C. Drifting-snow statistics from multiple-year autonomous measurements in Adélie Land, East Antarctica. Cryosphere 14, 1713–1725 (2020).

    Google Scholar 

  36. Palm, S. P., Yang, Y., Spinhirne, J. D. & Marshak, A. Satellite remote sensing of blowing snow properties over Antarctica. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD015828 (2011).

  37. Scarchilli, C. et al. Extraordinary blowing snow transport events in East Antarctica. Clim. Dyn. 34, 1195–1206 (2010).

    Google Scholar 

  38. Bintanja, R. Snowdrift sublimation in a katabatic wind region of the Antarctic ice sheet. J. Appl. Meteorol. Climatol. 40, 1952–1966 (2001).

    Google Scholar 

  39. Agosta, C. et al. Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere 13, 281–296 (2019).

    Google Scholar 

  40. Gerber, F., Sharma, V. & Lehning, M. CRYOWRF—model evaluation and the effect of blowing snow on the Antarctic surface mass balance. J. Geophys. Res. Atmos. 128, e2022JD037744 (2023).

    Google Scholar 

  41. Palm, S. P., Kayetha, V., Yang, Y. & Pauly, R. Blowing snow sublimation and transport over Antarctica from 11 years of CALIPSO observations. Cryosphere 11, 2555–2569 (2017).

    Google Scholar 

  42. Colbeck, S. C. A Review of Sintering in Seasonal Snow CRREL Report 97-10 (US Army Cold Regions Research and Engineering Laboratory, 1997).

  43. Blackford, J. R. Sintering and microstructure of ice: a review. J. Phys. D Appl. Phys. 40, R355–R385 (2007).

    CAS  Google Scholar 

  44. Comola, F., Gaume, J., Kok, J. F. & Lehning, M. Cohesion-induced enhancement of aeolian saltation. Geophys. Res. Lett. 46, 5566–5574 (2019).

    Google Scholar 

  45. Melo, D. B., Sharma, V., Comola, F., Sigmund, A. & Lehning, M. Modeling snow saltation: the effect of grain size and interparticle cohesion. J. Geophys. Res. Atmos. 127, e2021JD035260 (2022).

    Google Scholar 

  46. Kaempfer, T. U. & Schneebeli, M. Observation of isothermal metamorphism of new snow and interpretation as a sintering process. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007JD009047 (2007).

  47. Narteau, C., Zhang, D., Rozier, O. & Claudin, P. Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2008JF001127 (2009).

  48. Sharma, V., Braud, L. & Lehning, M. Understanding snow bedform formation by adding sintering to a cellular automata model. Cryosphere 13, 3239–3260 (2019).

    Google Scholar 

  49. Van Wessem, J. M. et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – part 2: Antarctica (1979–2016). Cryosphere 12, 1479–1498 (2018).

    Google Scholar 

  50. Gadde, S. & van de Berg, W. J. Contribution of blowing snow sublimation to the surface mass balance of Antarctica. Preprint at EGUsphere https://doi.org/10.5194/egusphere-2024-116 (2024).

  51. Landsat 8 (L8) Data Users Handbook No. LSDS-1574, Version 5.0 (US Geological Survey, 2019).

  52. Sentinel-2 User Handbook (European Space Agency, 2015).

  53. Mouginot, J., Scheuchl, B. & Rignot, E. Mapping of ice motion in Antarctica using synthetic-aperture radar data. Remote Sens. 4, 2753–2767 (2012).

    Google Scholar 

  54. Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow of the Antarctic ice sheet. Science 333, 1427–1430 (2011).

    CAS  Google Scholar 

  55. Hui, F. et al. Mapping blue-ice areas in Antarctica using ETM+ and MODIS data. Ann. Glaciol. 55, 129–137 (2014).

    Google Scholar 

  56. Matsuoka, K., Skoglund, A. & Roth, G. Quantarctica (dataset) (Norwegian Polar Institute, 2018); https://doi.org/10.21334/npolar.2018.8516e961

  57. Moussavi, M., Pope, A., Halberstadt, A. R. W. & Abdalati, W. Antarctic supraglacial lake detection using Landsat 8 and Sentinel-2 imagery: towards continental generation of lake volumes. Remote Sens. 12, 134 (2020).

    Google Scholar 

  58. Taylor, C. C. Automatic bandwidth selection for circular density estimation. Comput. Stat. Data Anal. 52, 3493–3500 (2008).

    Google Scholar 

  59. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  60. Caton Harrison, T. et al. Reanalysis representation of low-level winds in the Antarctic near-coastal region. Weather Clim. Dyn. 3, 1415–1437 (2022).

    Google Scholar 

  61. Tetzner, D., Thomas, E. & Allen, C. A validation of ERA5 reanalysis data in the southern Antarctic Peninsula—Ellsworth Land region, and its implications for ice core studies. Geosciences 9, 289 (2019).

    Google Scholar 

  62. Gossart, A. et al. An evaluation of surface climatology in state-of-the-art reanalyses over the Antarctic Ice Sheet. J. Clim. 32, 6899–6915 (2019).

    Google Scholar 

  63. Schmidt, R. A. Properties of blowing snow. Rev. Geophys. 20, 39–44 (1982).

    Google Scholar 

  64. He, S. & Ohara, N. A new formula for estimating the threshold wind speed for snow movement. J. Adv. Model. Earth Syst. 9, 2514–2525 (2017).

    Google Scholar 

  65. Li, L. & Pomeroy, J. W. Estimates of threshold wind speeds for snow transport using meteorological data. Am. Meteorol. Soc. 36, 205–213 (1997).

    Google Scholar 

  66. Crameri, F. Scientific colour maps. Zenodo https://zenodo.org/records/4491293 (2021).

Download references

Acknowledgements

M.P. acknowledges ENS Paris-Saclay for funding. C.N. acknowledges the financial support of the French National Research Agency through grants ANR-18-IDEX-0001 and ANR-23-CE56-0008. Perceptually uniform colour maps are used in certain figures66. We acknowledge the Norwegian Polar Institute’s Quantarctica package56.

Author information

Authors and Affiliations

Authors

Contributions

With advice from L.A., G.P. and C.N., M.P. processed the Sentinel-2 and Landsat 8 images. C.N. facilitated the analysis and comparison of the results with the sand dune theory. C.A. aided in interpreting the results. F.B. processed the Pléiades image. M.P. wrote the paper with input from all authors.

Corresponding author

Correspondence to Ghislain Picard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Simon Filhol and Giacomo Traversa for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Map of the dune orientation at high-resolution.

Map of the dune orientation at 2.5 × 2.5 km2 resolution retrieved from satellite imagery in November and December 2018–2021.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Table 1, Text and Notes with Figs. 14 and 15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poizat, M., Picard, G., Arnaud, L. et al. Widespread longitudinal snow dunes in Antarctica shaped by sintering. Nat. Geosci. 17, 889–895 (2024). https://doi.org/10.1038/s41561-024-01506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-024-01506-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing