Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low sulfur emissions from 2022 Hunga eruption due to seawater–magma interactions

Abstract

The explosive January 2022 Hunga submarine eruption in Tonga injected unprecedented water volumes into the upper atmosphere, generating widespread climatic impacts. However, it ejected anomalously little sulfur compared with other eruptions of similar volume. We explain the missing sulfur with volatile budgets calculated from volcanic ash samples spanning the eruption. We show that magma was stored in a weakly stratified reservoir at 2.1 km to >5.6 km depth. Magma rose within <3 min and fragmented at 400–1,000 m below sea level. This preserves microscale chemical mingling including ~1 wt% contrasts in magmatic water concentrations. The 11-h eruption released a total of 319 Tg of magmatic water, which is <10% of that derived from magmatic seawater interaction. Comparing magmatic and residual glass sulfur concentrations shows a total release of 9.4 TgS, but >93% of this entered the ocean during submarine magma fragmentation. These results raise the concern that satellite SO2 monitoring underestimates the magma output of submarine explosions and they are probably near invisible in ice-core records, despite their climate influence caused by water injection into the upper atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Composition of melt inclusions and matrix glass for the Hunga eruption.
Fig. 2: Sulfur variations in microlite-poor matrix glass.
Fig. 3: Water concentrations in Hunga magma.
Fig. 4: H2Ot profile across the boundary between two melts.
Fig. 5: Conceptual Hunga eruption model and S and H2O budget.

Similar content being viewed by others

Data availability

Source data for this paper are provided in Supplementary Tables 16 and are available via Figshare at https://doi.org/10.6084/m9.figshare.28665107 (ref. 68).

References

  1. Roggensack, K., Williams, S. N., Schaefer, S. J. & Parnell, R. A. Jr Volatiles from the 1994 eruptions of Rabaul: understanding large caldera systems. Science 273, 490–493 (1996).

    Article  CAS  Google Scholar 

  2. Wallace, P. J., Plank, T., Edmonds, M. & Hauri, E. H. in Encyclopedia of Volcanoes 163–183 (Elsevier, 2015).

  3. Kelly, P. M. & Sear, C. B. Climatic impact of explosive volcanic eruptions. Nature 311, 740–743 (1984).

    Article  Google Scholar 

  4. Hansen, J., Lacis, A., Ruedy, R. & Sato, M. Potential climate impact of Mount Pinatubo eruption. Geophys. Res. Lett. 19, 215–218 (1992).

    Article  Google Scholar 

  5. Matoza, R. S. et al. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science 377, 95–100 (2022).

    Article  CAS  Google Scholar 

  6. Proud, S. R., Prata, A. T. & Schmauß, S. The January 2022 eruption of Hunga Tonga-Hunga Ha’apai volcano reached the mesosphere. Science 378, 554–557 (2022).

    Article  CAS  Google Scholar 

  7. Cronin, S. J. et al. Extreme explosivity of the 15 January 2022 Hunga eruption, Tonga, driven by magma-mixing, caldera collapse and magma-water interaction. In IAVCEI Conference 1414 (IAVCEI, 2023).

  8. Carn, S., Krotkov, N., Fisher, B. & Li, C. Out of the blue: volcanic SO2 emissions during the 2021–2022 eruptions of Hunga Tonga—Hunga Ha’apai (Tonga). Front. Earth Sci. 10, 976962 (2022).

    Article  Google Scholar 

  9. Guo, S., Rose, W. I., Bluth, G. J. & Watson, I. M. Particles in the great Pinatubo volcanic cloud of June 1991: the role of ice. Geochem. Geophys. Geosyst. 5, Q05003 (2004).

    Article  Google Scholar 

  10. Mastin, L. G., Van Eaton, A. R. & Cronin, S. J. Did steam boost the height and growth of the giant Hunga eruption plume? Bull. Volcanol. 86, 64 (2024).

    Article  Google Scholar 

  11. Millan, L. et al. The Hunga Tonga-Hunga Ha’apai hydration of the stratosphere. Geophys. Res. Lett. 49, e2022GL099381 (2022).

    Article  CAS  Google Scholar 

  12. Vömel, H., Evan, S. & Tully, M. Water vapor injection into the stratosphere by Hunga Tonga-Hunga Ha’apai. Science 377, 1444–1447 (2022).

    Article  Google Scholar 

  13. Wilmouth, D. M., Østerstrøm, F. F., Smith, J. B., Anderson, J. G. & Salawitch, R. J. Impact of the Hunga Tonga volcanic eruption on stratospheric composition. Proc. Natl Acad. Sci. USA 120, e2301994120 (2023).

    Article  CAS  Google Scholar 

  14. Evan, S. et al. Rapid ozone depletion after humidification of the stratosphere by the Hunga Tonga eruption. Science 382, eadg2551 (2023).

    Article  CAS  Google Scholar 

  15. Colombier, M. et al. Atmosphere injection of sea salts during large explosive submarine volcanic eruptions. Sci. Rep. 13, 14435 (2023).

    Article  CAS  Google Scholar 

  16. Schellart, W., Lister, G. & Toy, V. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. Earth Sci. Rev. 76, 191–233 (2006).

    Article  Google Scholar 

  17. Brenna, M. et al. Post-caldera volcanism reveals shallow priming of an intra-ocean arc andesitic caldera: Hunga volcano, Tonga, SW Pacific. Lithos 412, 106614 (2022).

    Article  Google Scholar 

  18. Cronin, S. et al. New volcanic island unveils explosive past. Eos 98, 18–23 (2017).

    Google Scholar 

  19. Lynett, P. et al. Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption. Nature 609, 728–733 (2022).

    Article  CAS  Google Scholar 

  20. Clare, M. A. et al. Fast and destructive density currents created by ocean-entering volcanic eruptions. Science 381, 1085–1092 (2023).

    Article  CAS  Google Scholar 

  21. Borrero, J. C. et al. Tsunami runup and inundation in Tonga from the January 2022 eruption of Hunga volcano. Pure Appl. Geophys. 180, 1–22 (2023).

    Article  Google Scholar 

  22. Purkis, S. J. et al. The 2022 Hunga-Tonga megatsunami: near-field simulation of a once-in-a-century event. Sci. Adv. 9, eadf5493 (2023).

    Article  CAS  Google Scholar 

  23. Le Mével, H., Miller, C. A., Ribó, M., Cronin, S. & Kula, T. The magmatic system under Hunga volcano before and after the 15 January 2022 eruption. Sci. Adv. 9, eadh3156 (2023).

    Article  Google Scholar 

  24. Stolper, E. The speciation of water in silicate melts. Geochim. Cosmochim. Acta 46, 2609–2620 (1982).

    Article  CAS  Google Scholar 

  25. Caulfield, J., Cronin, S. J., Turner, S. P. & Cooper, L. B. Mafic Plinian volcanism and ignimbrite emplacement at Tofua volcano, Tonga. Bull. Volcanol. 73, 1259–1277 (2011).

    Article  Google Scholar 

  26. Cooper, L., Plank, T., Arculus, R., Hauri, E. & Kelley, K. A. Arc–backarc exchange along the Tonga–Lau system: constraints from volatile elements. J. Petrol. 63, egac072 (2022).

    Article  Google Scholar 

  27. Moore, L. R. et al. Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. Am. Miner. 100, 806–823 (2015).

    Article  Google Scholar 

  28. Firth, C. et al. Experimental constraints on the differentiation of low-alkali magmas beneath the Tonga arc: implications for the origin of arc tholeiites. Lithos 344, 440–451 (2019).

    Article  Google Scholar 

  29. Behrens, H., Zhang, Y. & Xu, Z. H2O diffusion in dacitic and andesitic melts. Geochim. Cosmochim. Acta 68, 5139–5150 (2004).

    Article  CAS  Google Scholar 

  30. Kelly, L. J. et al. Airfall volume of the 15 January 2022 eruption of Hunga volcano estimated from ocean color changes. Bull. Volcanol. 86, 59 (2024).

    Article  Google Scholar 

  31. Paredes-Mariño, J. et al. Fragmentation mechanisms of the 2022 Hunga eruption inferred from volcanic ash properties from land and sea. In AGU23 Conference V43A-03 (AGU, 2023).

  32. Keppler, H. Experimental evidence for the source of excess sulfur in explosive volcanic eruptions. Science 284, 1652–1654 (1999).

    Article  CAS  Google Scholar 

  33. Parmigiani, A., Faroughi, S., Huber, C., Bachmann, O. & Su, Y. Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust. Nature 532, 492–495 (2016).

    Article  CAS  Google Scholar 

  34. Muth, M. J. & Wallace, P. J. Sulfur recycling in subduction zones and the oxygen fugacity of mafic arc magmas. Earth Planet. Sci. Lett. 599, 117836 (2022).

    Article  CAS  Google Scholar 

  35. Rutherford, M. J. & Devine, J. D. in Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines (eds Newhall, C.G. & Punongbayan, R.S.) 751–766 (University of Washington Press, 1996).

  36. Caulfield, J., Turner, S. P., Smith, I., Cooper, L. & Jenner, G. A. Magma evolution in the primitive, intra-oceanic Tonga arc: petrogenesis of basaltic andesites at Tofua volcano. J. Petrol. 53, 1197–1230 (2012).

    Article  CAS  Google Scholar 

  37. Scaillet, B., Clémente, B., Evans, B. W. & Pichavant, M. Redox control of sulfur degassing in silicic magmas. J. Geophys. Res. Solid Earth 103, 23937–23949 (1998).

    Article  CAS  Google Scholar 

  38. Deering, C. D., Gravley, D. M., Vogel, T. A., Cole, J. W. & Leonard, G. S. Origins of cold-wet-oxidizing to hot-dry-reducing rhyolite magma cycles and distribution in the Taupo volcanic zone, New Zealand. Contrib. Mineral. Petrol. 160, 609–629 (2010).

    Article  CAS  Google Scholar 

  39. Cadoux, A., Scaillet, B., Druitt, T. H. & Deloule, E. Magma storage conditions of large Plinian eruptions of Santorini Volcano (Greece). J. Petrol. 55, 1129–1171 (2014).

    Article  CAS  Google Scholar 

  40. Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. Why do mafic arc magmas contain 4 wt% water on average? Earth Planet. Sci. Lett. 364, 168–179 (2013).

    Article  CAS  Google Scholar 

  41. Mellors, R. & Sparks, R. Spatter-rich pyroclastic flow deposits on Santorini, Greece. Bull. Volcanol. 53, 327–342 (1991).

    Article  Google Scholar 

  42. Firth, C. W. et al. Dynamics and pre-eruptive conditions of catastrophic, ignimbrite-producing eruptions from the Yenkahe Caldera, Vanuatu. J. Volcanol. Geotherm. Res. 308, 39–60 (2015).

    Article  CAS  Google Scholar 

  43. Jorgenson, C., Caricchi, L., Chiaradia, M., Agreda-López, M. & Giordano, G. Rapid accumulation and ascent precedes caldera forming eruption of low viscosity magma. Contrib. Mineral. Petrol. 179, 16 (2024).

    Article  CAS  Google Scholar 

  44. Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).

    Article  CAS  Google Scholar 

  45. Sigl, M., Toohey, M., McConnell, J. R., Cole-Dai, J. & Severi, M. Volcanic stratospheric sulfur injections and aerosol optical depth during the Holocene (past 11500 years) from a bipolar ice-core array. Earth Syst. Sci. Data 14, 3167–3196 (2022).

    Article  Google Scholar 

  46. McIntosh, I. M., Nichols, A. R., Tani, K. & Llewellin, E. W. Accounting for the species-dependence of the 3500 cm−1 H2Ot infrared molar absorptivity coefficient: implications for hydrated volcanic glasses. Am. Miner. 102, 1677–1689 (2017).

    Article  Google Scholar 

  47. Mandeville, C. W. et al. Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. Am. Miner. 87, 813–821 (2002).

    Article  CAS  Google Scholar 

  48. Wysoczanski, R. & Tani, K. Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: an example from the Izu-Bonin arc. J. Volcanol. Geotherm. Res. 156, 302–314 (2006).

    Article  CAS  Google Scholar 

  49. Nichols, A. R. & Wysoczanski, R. Using micro-FTIR spectroscopy to measure volatile contents in small and unexposed inclusions hosted in olivine crystals. Chem. Geol. 242, 371–384 (2007).

    Article  CAS  Google Scholar 

  50. Tollan, P., Ellis, B., Troch, J. & Neukampf, J. Assessing magmatic volatile equilibria through FTIR spectroscopy of unexposed melt inclusions and their host quartz: a new technique and application to the Mesa Falls Tuff, Yellowstone. Contrib. Mineral. Petrol. 174, 24 (2019).

    Article  Google Scholar 

  51. Le Losq, C., Neuville, D. R., Moretti, R. & Roux, J. Determination of water content in silicate glasses using Raman spectrometry: implications for the study of explosive volcanism. Am. Miner. 97, 779–790 (2012).

    Article  Google Scholar 

  52. Long, D. A. Raman Spectroscopy (McGraw-Hill, 1977).

  53. van Gerve, T. D. & Namur, O. SilicH2O: a graphical user interface for processing silicate glass Raman spectra and quantifying H2O. Volcanica 6, 405–413 (2023).

    Article  Google Scholar 

  54. González-García, D. et al. Water-enhanced interdiffusion of major elements between natural shoshonite and high-K rhyolite melts. Chem. Geol. 466, 86–101 (2017).

    Article  Google Scholar 

  55. Nandedkar, R. H., Ulmer, P. & Müntener, O. Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib. Mineral. Petrol. 167, 1015 (2014).

    Article  Google Scholar 

  56. Almeev, R. R., Holtz, F., Ariskin, A. A. & Kimura, J.-I. Storage conditions of Bezymianny volcano parental magmas: results of phase equilibria experiments at 100 and 700 MPa. Contrib. Mineral. Petrol. 166, 1389–1414 (2013).

    Article  CAS  Google Scholar 

  57. Putirka, K. D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 69, 61–120 (2008).

    Article  CAS  Google Scholar 

  58. Kress, V. C. & Carmichael, I. S. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92 (1991).

    Article  CAS  Google Scholar 

  59. Mollo, S., Putirka, K., Misiti, V., Soligo, M. & Scarlato, P. A new test for equilibrium based on clinopyroxene–melt pairs: clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. Chem. Geol. 352, 92–100 (2013).

    Article  CAS  Google Scholar 

  60. Mollo, S. & Masotta, M. Optimizing pre-eruptive temperature estimates in thermally and chemically zoned magma chambers. Chem. Geol. 368, 97–103 (2014).

    Article  CAS  Google Scholar 

  61. Lindsley, D. H. Pyroxene thermometry. Am. Miner. 68, 477–493 (1983).

    CAS  Google Scholar 

  62. Droop, G. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 51, 431–435 (1987).

    Article  CAS  Google Scholar 

  63. Putirka, K. D. Igneous thermometers and barometers based on plagioclase + liquid equilibria: tests of some existing models and new calibrations. Am. Miner. 90, 336–346 (2005).

    Article  CAS  Google Scholar 

  64. Lange, R. A., Frey, H. M. & Hector, J. A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am. Miner. 94, 494–506 (2009).

    Article  CAS  Google Scholar 

  65. Iacovino, K., Matthews, S., Wieser, P. E., Moore, G. & Bégué, F. VESIcal part I: an open-source thermodynamic model engine for mixed volatile (H2O-CO2) solubility in silicate melts. Earth Space Sci. 8, e2020EA001584 (2021).

    Article  Google Scholar 

  66. Ghiorso, M. S. & Gualda, G. A. An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib. Mineral. Petrol. 169, 53 (2015).

    Article  Google Scholar 

  67. Iacovino, K. & Till, C. B. DensityX: a program for calculating the densities of magmatic liquids up to 1,627 °C and 30 kbar. Volcanica 2, 1–10 (2019).

    Article  Google Scholar 

  68. Wu, J. et al. Data for ‘Low sulfur emissions from 2022 Hunga eruption due to seawater-magma interactions’. Figshare https://doi.org/10.6084/m9.figshare.28665107 (2025).

Download references

Acknowledgements

R. Almeev and F. Marxer (Leibniz University Hannover) are acknowledged for providing Raman glass standards. This research is financially supported by New Zealand Government Ministry of Business (Innovation and Employment Endeavour Research Program UOA24103), Royal Society of New Zealand Te Apārangi (Marsden project MFP-UOO2218), Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron and the New Zealand Synchrotron Group (project M18638), the Korean Polar Research Institute (project PE22550) and the Alexander von Humboldt Foundation (for D.G.-G.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.J.C.; methodology: J.W., S.J.C., I.A.U.; sample collection: S.J.C., F.L., T.K., S.-H.P.; data collection: J.W., S.J.C., I.A.U., D.A., J.P.-M., K.H., M.H., D.G.-G., A.R.L.N., J.V., A.K.; formal analysis: J.W., S.J.C., M.B.; funding acquisition: S.J.C., M.B., S.-H.P.; supervision: S.J.C., M.B.; writing–original draft: J.W., S.J.C., M.B.; writing–review and editing: all authors.

Corresponding author

Correspondence to Shane J. Cronin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Philipson Bani, Razvan Popa and Thor Hansteen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Microscopic images of melt inclusions in different host mineral phases.

Mineral hosts include olivine, orthopyroxene, clinopyroxene and plagioclase.

Extended Data Fig. 2 Compositional variations with changing Mg# in melt inclusions and matrix glass associated to different mineral phases from Hunga samples.

a, SiO2. b, CaO. c, Na2O. d, K2O. e, Al2O3. f, TiO2. g, P2O5. h, Cl. Mg# = molar Mg/(Mg + Fe2+) × 100.

Extended Data Fig. 3 Plot of the ratio between molecular water (H2Om) and hydroxyl (OH) vs total water (H2Ot) in matrix glass from Hunga pyroclasts.

The density of overlapping data points are indicated by the colour code for n = 812 analyses.

Extended Data Fig. 4 Frequency histogram of S concentrations in microlite-poor matrix glass from Hunga.

a, Subaerial samples covering the whole 2022 Hunga eruptive stages (n = 1,112). b, Submarine samples (n = 168). Kernel density estimate (KDE) curves are shown. Below detection limit (~30 ppm S) concentrations were found for 186 analyses in a and for 30 in b.

Extended Data Fig. 5 Frequency histogram of Raman H2O concentrations in microlite-poor matrix glass from Hunga.

a, Subaerial samples covering the whole 2022 Hunga eruptive stages (n = 161). b, Submarine samples (n = 56). KDE curves are shown. Below detection limit (~0.1 wt% H2O) concentrations were found for nine analyses each in a and b.

Extended Data Fig. 6 Calibration line for quantification of H2O concentration by Raman spectroscopy (n = 14).

Error bars represent 2 SD uncertainty of several measurements of Rw/s by Raman (n = 3–4) and H2O concentration by Karl Fischer Titration (KFT, n = 2) and/or FTIR (n = 4). Some error bars are smaller than the plot symbol. \({C}_{{{\rm{H}}}_{2}{\rm{O}}}\) is given in wt% (Methods).

Extended Data Fig. 7 Measured vs predicted clinopyroxene DiHd components for Hunga samples.

Predicted values calculated from post-entrapment crystallization (PEC) corrected melt inclusions.

Extended Data Table 1 Sample information and analytical methods

Supplementary information

Supplementary Tables

Six supplementary data tables including major element and volatile compositions for Hunga pyroclasts and standards.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Cronin, S.J., Brenna, M. et al. Low sulfur emissions from 2022 Hunga eruption due to seawater–magma interactions. Nat. Geosci. 18, 518–524 (2025). https://doi.org/10.1038/s41561-025-01691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-025-01691-7

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene