Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global mangrove growth variability driven by climatic oscillation-induced sea-level fluctuations

Abstract

Mangroves are a carbon-dense and highly productive ecosystem but can experience massive dieback under environmental extremes. Climatic oscillations, such as the El Niño–Southern Oscillation (ENSO), are major drivers of global climate variability, yet their impact on mangrove growth at the global scale remains uncertain. Here, using long-term satellite observations from 2001 to 2020, we show that more than 50% of global mangrove areas experience significant variations during ENSO events, exhibiting a seesaw-like pattern across the Pacific Basin where mangrove leaf area decreases in the western Pacific but increases in the eastern Pacific during El Niño, with the reverse occurring during La Niña. The Indian Ocean Dipole affects mangroves across the Indian Ocean similarly but with a lower magnitude relative to ENSO. These patterns are driven by corresponding sea-level fluctuations across the Pacific and Indian ocean basins, with local contributions from lunar nodal cycles. Our study highlights the crucial role of short-term sea-level fluctuations driven by climatic oscillations in dominating the variability of coastal wetland growth and, consequently, in influencing the blue carbon sink.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LAI anomaly in global mangroves during climatic events from 2001 to 2020.
Fig. 2: Zonal seesaw-like pattern of mangrove LAI anomaly corresponding to three climate oscillation events.
Fig. 3: Relationships between SLA and climatic oscillations.
Fig. 4: Attribution of mangrove LAI anomalies.

Similar content being viewed by others

Data availability

All data used in this study are publicly available. The GLASS V6 LAI data are available at http://www.glass.umd.edu/LAI/MODIS/250m/. The Global Mangrove Watch v3.0 data are available via Zenodo at https://doi.org/10.5281/zenodo.6894273 (ref. 61). Gridded climate data used in this study are presented in Supplementary Table 2.

Code availability

All code used in this study is available from the corresponding authors upon reasonable request.

References

  1. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).

    Article  CAS  Google Scholar 

  2. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    Article  CAS  Google Scholar 

  3. Barber, R. T. & Chavez, F. P. Biological consequences of El Niño. Science 222, 1203–1210 (1983).

    Article  CAS  Google Scholar 

  4. Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211 (2020).

    Article  Google Scholar 

  5. Johannessen, S. C. & Christian, J. R. Why blue carbon cannot truly offset fossil fuel emissions. Commun. Earth Environ. 4, 411 (2023).

    Article  Google Scholar 

  6. Worthington, T. A. et al. Harnessing big data to support the conservation and rehabilitation of mangrove forests globally. One Earth 2, 429–443 (2020).

    Article  Google Scholar 

  7. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article  Google Scholar 

  8. Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

    Article  Google Scholar 

  9. Zhang, Z. et al. Stronger increases but greater variability in global mangrove productivity compared to that of adjacent terrestrial forests. Nat. Ecol. Evol. 8, 239–250 (2024).

    Article  Google Scholar 

  10. Friess, D. A., Adame, M. F., Adams, J. B. & Lovelock, C. E. Mangrove forests under climate change in a 2 °C world. Wiley Interdiscip. Rev. Clim. Change 13, e792 (2022).

    Article  Google Scholar 

  11. Duke, N. C. et al. Large-scale dieback of mangroves in Australia. Mar. Freshw. Res. 68, 1816–1829 (2017).

    Article  Google Scholar 

  12. Sippo, J. Z., Lovelock, C. E., Santos, I. R., Sanders, C. J. & Maher, D. T. Mangrove mortality in a changing climate: an overview. Estuar. Coast. Shelf Sci. 215, 241–249 (2018).

    Article  Google Scholar 

  13. Asbridge, E. F. et al. Assessing the distribution and drivers of mangrove dieback in Kakadu National Park, northern Australia. Estuar. Coast. Shelf Sci. 228, 106353 (2019).

    Article  Google Scholar 

  14. Lovelock, C. E., Feller, I. C., Reef, R., Hickey, S. & Ball, M. C. Mangrove dieback during fluctuating sea levels. Sci. Rep. 7, 1680 (2017).

    Article  Google Scholar 

  15. Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).

    Article  CAS  Google Scholar 

  16. Duke, N. C. et al. ENSO-driven extreme oscillations in mean sea level destabilise critical shoreline mangroves—an emerging threat. PLoS Clim. 1, e0000037 (2022).

    Article  Google Scholar 

  17. Hickey, S. M. et al. ENSO feedback drives variations in dieback at a marginal mangrove site. Sci. Rep. 11, 8130 (2021).

    Article  CAS  Google Scholar 

  18. Abhik, S. et al. Influence of the 2015–2016 El Niño on the record-breaking mangrove dieback along northern Australia coast. Sci. Rep. 11, 20411 (2021).

    Article  CAS  Google Scholar 

  19. Saintilan, N. et al. The lunar nodal cycle controls mangrove canopy cover on the Australian continent. Sci. Adv. 8, eabo6602 (2022).

    Article  CAS  Google Scholar 

  20. Palmer, P. I. et al. Drivers and impacts of Eastern African rainfall variability. Nat. Rev. Earth Environ. 4, 254–270 (2023).

    Article  Google Scholar 

  21. Ratna, S. B., Cherchi, A., Osborn, T. J., Joshi, M. & Uppara, U. The extreme positive Indian Ocean Dipole of 2019 and associated Indian summer monsoon rainfall response. Geophys. Res. Lett. 48, e2020GL091497 (2021).

    Article  Google Scholar 

  22. Ma, H. & Liang, S. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 273, 112985 (2022).

    Article  Google Scholar 

  23. Satriawan, T. W. et al. Strong green-up of tropical Asia during the 2015/16 El Niño. Geophys. Res. Lett. 51, e2023GL106955 (2024).

    Article  Google Scholar 

  24. Janssen, T. et al. Drought effects on leaf fall, leaf flushing and stem growth in the Amazon forest: reconciling remote sensing data and field observations. Biogeosciences 18, 4445–4472 (2021).

    Article  CAS  Google Scholar 

  25. Servino, R. N., Gomes, L. E., de, O. & Bernardino, A. F. Extreme weather impacts on tropical mangrove forests in the Eastern Brazil Marine Ecoregion. Sci. Total Environ. 628–629, 233–240 (2018).

    Article  Google Scholar 

  26. Otero, X. L. et al. High fragility of the soil organic C pools in mangrove forests. Mar. Pollut. Bull. 119, 460–464 (2017).

    Article  CAS  Google Scholar 

  27. Drexler, J. Z. & Ewel, K. C. Effect of the 1997–1998 ENSO-related drought on hydrology and salinity in a micronesian wetland complex. Estuaries 24, 347–356 (2001).

    Article  Google Scholar 

  28. Carruthers, L. et al. Sea-level rise and extreme Indian Ocean Dipole explain mangrove dieback in the Maldives. Sci. Rep. 14, 27012 (2024).

    Article  CAS  Google Scholar 

  29. Bunting, P. et al. The Global Mangrove Watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    Article  Google Scholar 

  30. Slette, I. J. et al. How ecologists define drought, and why we should do better. Glob. Change Biol. 25, 3193–3200 (2019).

    Article  Google Scholar 

  31. Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Article  CAS  Google Scholar 

  32. Merrifield, M. A., Thompson, P. R. & Lander, M. Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett. 39, L13602 (2012).

    Article  Google Scholar 

  33. Widlansky, M. J., Timmermann, A. & Cai, W. Future extreme sea level seesaws in the tropical Pacific. Sci. Adv. 1, e1500560 (2015).

    Article  Google Scholar 

  34. Adame, M. F. et al. Mangroves in arid regions: ecology, threats, and opportunities. Estuar. Coast. Shelf Sci. 248, 106796 (2021).

    Article  CAS  Google Scholar 

  35. Zhu, X., Sun, C. & Qin, Z. Drought‐induced salinity enhancement weakens mangrove greenhouse gas cycling. J. Geophys. Res. Biogeosci. 126, e2021JG006416 (2021).

    Article  CAS  Google Scholar 

  36. Bathmann, J. et al. Modelling mangrove forest structure and species composition over tidal inundation gradients: the feedback between plant water use and porewater salinity in an arid mangrove ecosystem. Agric. Meteorol. 308–309, 108547 (2021).

    Article  Google Scholar 

  37. Hoppe-Speer, S. C. L., Adams, J. B., Rajkaran, A. & Bailey, D. The response of the red mangrove Rhizophora mucronata Lam. to salinity and inundation in South Africa. Aquat. Bot. 95, 71–76 (2011).

    Article  Google Scholar 

  38. Ball, M. C. & Farquhar, G. D. Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiol. 74, 1–6 (1984).

    Article  CAS  Google Scholar 

  39. Méndez-Alonzo, R., López-Portillo, J., Moctezuma, C., Bartlett, M. K. & Sack, L. Osmotic and hydraulic adjustment of mangrove saplings to extreme salinity. Tree Physiol. 36, 1562–1572 (2016).

    Article  Google Scholar 

  40. Wang, J. et al. Modulation of land photosynthesis by the Indian Ocean Dipole: satellite-based observations and CMIP6 future projections. Earth Future 9, e2020EF001942 (2021).

    Article  Google Scholar 

  41. Ruehr, S. et al. Evidence and attribution of the enhanced land carbon sink. Nat. Rev. Earth Environ. 4, 518–534 (2023).

    Article  CAS  Google Scholar 

  42. Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human‐driven mangrove loss. Glob. Change Biol. 26, 5844–5855 (2020).

    Article  Google Scholar 

  43. Bunting, P. et al. Global mangrove extent change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sens. 14, 3657 (2022).

    Article  Google Scholar 

  44. Kamal, M., Phinn, S. & Johansen, K. Assessment of multi-resolution image data for mangrove leaf area index mapping. Remote Sens. Environ. 176, 242–254 (2016).

    Article  Google Scholar 

  45. Xiao, J. et al. Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years. Remote Sens. Environ. 233, 111383 (2019).

    Article  Google Scholar 

  46. Hawman, P. A., Mishra, D. R. & O'Connell, J. L. Dynamic emergent leaf area in tidal wetlands: implications for satellite-derived regional and global blue carbon estimates. Remote Sens. Environ. 290, 113553 (2023).

    Article  Google Scholar 

  47. Justice, C. O. et al. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 83, 3–15 (2002).

    Article  Google Scholar 

  48. Tang, Y. et al. Mango-GPP: a process-based model for simulating gross primary productivity of mangrove ecosystems. J. Adv. Model. Earth Syst. 15, e2023MS003714 (2023).

    Article  Google Scholar 

  49. Gou, R. et al. Atmospheric water demand constrains net ecosystem production in subtropical mangrove forests. J. Hydrol. 630, 130651 (2024).

    Article  CAS  Google Scholar 

  50. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J. Clim. 23, 1696–1718 (2010).

    Article  Google Scholar 

  51. Rienecker, M. M. et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 24, 3624–3648 (2011).

    Article  Google Scholar 

  52. Beguería, S., Vicente-Serrano, S. M. & Angulo-Martínez, M. A multiscalar global drought dataset: the SPEIbase: a new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 91, 1351–1356 (2010).

    Article  Google Scholar 

  53. Guinehut, S., Dhomps, A.-L., Larnicol, G. & Le Traon, P.-Y. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Sci. 8, 845–857 (2012).

    Article  Google Scholar 

  54. Rovai, A. S. et al. Macroecological patterns of forest structure and allometric scaling in mangrove forests. Glob. Ecol. Biogeogr. 30, 1000–1013 (2021).

    Article  Google Scholar 

  55. Almar, R. et al. Influence of El Niño on the variability of global shoreline position. Nat. Commun. 14, 3133 (2023).

    Article  CAS  Google Scholar 

  56. Yan, R. et al. Interactive effects of the El Niño–Southern Oscillation and Indian Ocean Dipole on the tropical net ecosystem productivity. Agric. Meteorol. 336, 109472 (2023).

    Article  Google Scholar 

  57. Enríquez, A. R. et al. Predictable changes in extreme sea levels and coastal flood risk due to long-term tidal cycles. J. Geophys. Res. Oceans 127, e2021JC018157 (2022).

    Article  Google Scholar 

  58. Peng, D., Hill, E. M., Meltzner, A. J. & Switzer, A. D. Tide gauge records show that the 18.61-year nodal tidal cycle can change high water levels by up to 30 cm. J. Geophys. Res. Oceans 124, 736–749 (2019).

    Article  Google Scholar 

  59. Chen, C., Riley, W. J., Prentice, I. C. & Keenan, T. F. CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. Proc. Natl Acad. Sci. USA 119, e2115627119 (2022).

    Article  CAS  Google Scholar 

  60. Kim, J.-S., Kug, J.-S. & Jeong, S.-J. Intensification of terrestrial carbon cycle related to El Niño–Southern Oscillation under greenhouse warming. Nat. Commun. 8, 1674 (2017).

    Article  Google Scholar 

  61. Bunting, P. et al. Global Mangrove Watch (1996–2020) version 3.0 dataset. Zenodo https://doi.org/10.5281/zenodo.6894273 (2022).

  62. Duke, N. C., Ball, M. C. & Ellison, J. C. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 7, 27–47 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

Y.L. acknowledges the support from the National Natural Science Foundation of China Grants (grant no. 42276232). D.F. thanks M. and M. Cochran for endowing the Cochran Family Professorship in Earth and Environmental Sciences at Tulane University. We thank W. Cai at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) for his feedback on an earlier version of this work.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. conceptualized the study. Z.Z. and Y.L. designed the study. Z.Z. performed the analysis and drafted the paper with contributions from all other co-authors. All authors contributed to the interpretation of the results. Y.L. is the main corresponding author of the study.

Corresponding authors

Correspondence to Zhen Zhang or Yangfan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Norman Duke, Melinda Martinez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Xujia Jiang, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Distribution of mangroves within six biogeographic regions.

This map was adopted from ref. 62.

Extended Data Fig. 2 Local-scale mangrove variation in response to ENSO.

ΔEVI (average EVI during ENSO event minus average EVI during neutral periods) in (a) Shoalwater Bay, Australia, and (b) Gulf of California, Mexico. The left panels show Landsat results at 30-m resolution. The other three-column panels show MODIS results at 250-m resolution with three different criteria to define mangrove extents. The right panels show results for pure mangrove pixels (mangrove coverage > 80%) at 250-m resolution, which is used in the main analysis. Areas with green color represent mangroves with enhanced growth, and red color indicates mangrove degradation during the ENSO event.

Extended Data Fig. 3 Observed spatial patterns of changes in climatic and oceanic factors corresponding to 2015-2016 El Niño.

Changes in anomaly (z-score) of mean monthly (a) air temperature, (b) SPEI, (c) wind speed, (d) sea surface temperature, (e) sea surface salinity, and (f) sea-level anomaly are shown. Pie plots indicate the area-weighted proportion of grid cells with significantly increased LAI (green), significantly decreased LAI (purple), or no significant difference with neutral phases (grey) (P > 0.05).

Extended Data Fig. 4 Observed spatial patterns of changes in climatic and oceanic factors corresponding to 2010-2012 La Niña.

Changes in anomaly (z-score) of mean monthly (a) air temperature, (b) SPEI, (c) wind speed, (d) sea surface temperature, (e) sea surface salinity, and (f) sea-level anomaly are shown. Pie plots indicate the area-weighted proportion of grid cells with significantly increased LAI (green), significantly decreased LAI (purple), or no significant difference with neutral phases (grey) (P > 0.05).

Extended Data Fig. 5 Observed spatial patterns of changes in climatic and oceanic factors corresponding to 2019 pIOD.

Changes in anomaly (z-score) of mean monthly (a) air temperature, (b) SPEI, (c) wind speed, (d) sea surface temperature, (e) sea surface salinity, and (f) sea-level anomaly are shown. Pie plots indicate the area-weighted proportion of grid cells with significantly increased LAI (green), significantly decreased LAI (purple), or no significant difference with neutral phases (grey) (P > 0.05).

Extended Data Fig. 6 Each term in Eq. (4) plotted as a contribution to ΔLAI anomaly in the response to 2015-2016 El Niño.

The contribution is calculated as the product of mangrove sensitivity to (a) air temperature, (b) SPEI, (c) wind speed, (d) sea surface temperature, (e) sea surface salinity, and (f) sea-level anomaly and El Niño-induced anomaly in these factors.

Extended Data Fig. 7 Each term in Eq. (4) plotted as a contribution to ΔLAI anomaly in the response to 2010-2012 La Niña.

The contribution is calculated as the product of mangrove sensitivity to (a) air temperature, (b) SPEI, (c) wind speed, (d) sea surface temperature, (e) sea surface salinity, and (f) sea-level anomaly and La Niña-induced anomaly in these factors.

Extended Data Fig. 8 Dominant driver of sea level anomaly during climatic events.

The dominant component driving SLA during (a) 2015-2016 El Niño, (b) 2010-2012 La Niña, and (c) 2019 pIOD. In (a) and (b), the left pie charts represent results from Indo-Malesia and Australasia, while in (c), the left pie chart shows results from eastern Africa. The right pie charts in (a) and (b) depict results from western America, while in (c), the right pie chart shows results from Indo-Malesia and Australasia. The red areas in the charts denote regions where SLA is predominantly influenced by climatic oscillations, and the blue areas indicate regions where the nodal cycle is the dominant factor. Specific spatial details of SLA contributed by climatic oscillations and nodal cycle are shown in Supplementary Fig. 8.

Extended Data Fig. 9 Each term in Eq. (4) plotted as a contribution to ΔLAI anomaly in the response to 2019 pIOD.

The contribution is calculated as the product of mangrove sensitivity to (a) air temperature, (b) SPEI, (c) wind speed, (d) sea surface temperature, (e) sea surface salinity, and (f) sea-level anomaly and pIOD-induced anomaly in these factors.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Luo, X., Friess, D.A. et al. Global mangrove growth variability driven by climatic oscillation-induced sea-level fluctuations. Nat. Geosci. 18, 488–494 (2025). https://doi.org/10.1038/s41561-025-01701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-025-01701-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing