Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observational constraints imply limited future Atlantic meridional overturning circulation weakening

Abstract

The degree to which the Atlantic meridional overturning circulation (AMOC) weakens over the twenty-first century varies widely across climate models, with some predicting substantial weakening. Here we show that this uncertainty can be greatly reduced by using a thermal-wind expression that relates the AMOC strength to the meridional density difference and the overturning depth in the Atlantic. This expression captures the intermodel spread in AMOC weakening, with most of the spread arising from overturning depth changes. The overturning depth also establishes a crucial link between the present-day and future AMOC strength. Climate models with a stronger and deeper present-day overturning tend to predict larger weakening and shoaling under warming because the present-day North Atlantic is less stratified, allowing for a deeper penetration of surface buoyancy flux changes, larger density changes at depth and, consequently, larger AMOC weakening. By incorporating observational constraints, we conclude that the AMOC will experience limited weakening of about 3–6 Sv (about 18–43%) by the end of this century, regardless of emissions scenario. These results indicate that the uncertainty in twenty-first-century AMOC weakening and the propensity to predict substantial AMOC weakening can be attributed primarily to climate model biases in accurately simulating the present-day ocean stratification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationship between the present-day and future AMOC strength.
Fig. 2: Controls on AMOC weakening at the end of the twenty-first century.
Fig. 3: Relationship between present-day and future North Atlantic stratification.
Fig. 4: Schematic depicting the processes linking the present-day and future AMOC strength.
Fig. 5: Constraints on AMOC weakening at the end of the twenty-first century.

Similar content being viewed by others

Data availability

We thank the climate modelling groups for producing and making available their model output, which is accessible on the Earth System Grid Federation (ESGF) Portal (https://esgf-node.llnl.gov/search/cmip6/).

Code availability

The code needed to calculate the overturning depth scale is available on Zenodo at https://doi.org/10.5281/zenodo.15103083 (ref. 53).

References

  1. Schmittner, A., Latif, M. & Schneider, B. Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett. 32 (2005).

  2. Cheng, W., Chiang, J. C. & Zhang, D. Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Clim. 26, 7187–7197 (2013).

    Article  Google Scholar 

  3. Reintges, A., Martin, T., Latif, M. & Keenlyside, N. S. Uncertainty in twenty-first century projections of the Atlantic meridional overturning circulation in CMIP3 and CMIP5 models. Clim. Dyn. 49, 1495–1511 (2017).

    Article  Google Scholar 

  4. Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. CMIP6 models predict significant 21st century decline of the Atlantic meridional overturning circulation. Geophys. Res. Lett. 47, e2019GL086075 (2020).

    Article  Google Scholar 

  5. Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: a review. Rev. Geophys. 54, 5–63 (2016).

    Article  Google Scholar 

  6. Ganachaud, A. & Wunsch, C. Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Clim. 16, 696–705 (2003).

    Article  Google Scholar 

  7. Zhang, R. & Delworth, T. L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett. 33 (2006).

  8. Zhang, R. et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys. 57, 316–375 (2019).

    Article  Google Scholar 

  9. Mahajan, S., Zhang, R. & Delworth, T. L. Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. J. Clim. 24, 6573–6581 (2011).

    Article  Google Scholar 

  10. Day, J. J., Hargreaves, J., Annan, J. & Abe-Ouchi, A. Sources of multi-decadal variability in Arctic sea ice extent. Environ. Res. Lett. 7, 034011 (2012).

    Article  Google Scholar 

  11. Frierson, D. M. et al. Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci. 6, 940–944 (2013).

    Article  CAS  Google Scholar 

  12. Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014).

    Article  CAS  Google Scholar 

  13. Marshall, J., Donohoe, A., Ferreira, D. & McGee, D. The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Clim. Dyn. 42, 1967–1979 (2014).

    Article  Google Scholar 

  14. Yin, J., Griffies, S. M. & Stouffer, R. J. Spatial variability of sea level rise in twenty-first century projections. J. Clim. 23, 4585–4607 (2010).

    Article  Google Scholar 

  15. Gregory, J. M. et al. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing. Geosci. Model Dev. 9, 3993–4017 (2016).

    Article  CAS  Google Scholar 

  16. Saenko, O. A., Yang, D. & Myers, P. G. Response of the North Atlantic dynamic sea level and circulation to Greenland meltwater and climate change in an eddy-permitting ocean model. Clim. Dyn. 49, 2895–2910 (2017).

    Article  Google Scholar 

  17. Vellinga, M. & Wood, R. A. Impacts of thermohaline circulation shutdown in the twenty-first century. Clim. Change 91, 43–63 (2008).

    Article  Google Scholar 

  18. Jackson, L. et al. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dyn. 45, 3299–3316 (2015).

    Article  Google Scholar 

  19. Liu, W., Fedorov, A. V., Xie, S.-P. & Hu, S. Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate. Sci. Adv. 6, eaaz4876 (2020).

    Article  Google Scholar 

  20. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  21. Gregory, J. et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32 (2005).

  22. Gregory, J. M. & Tailleux, R. Kinetic energy analysis of the response of the Atlantic meridional overturning circulation to CO2-forced climate change. Clim. Dyn. 37, 893–914 (2011).

    Article  Google Scholar 

  23. Weaver, A. J. et al. Stability of the Atlantic meridional overturning circulation: a model intercomparison. Geophys. Res. Lett. 39 (2012).

  24. Kostov, Y., Armour, K. C. & Marshall, J. Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophys. Res. Lett. 41, 2108–2116 (2014).

    Article  Google Scholar 

  25. Winton, M. et al. Has coarse ocean resolution biased simulations of transient climate sensitivity? Geophys. Res. Lett. 41, 8522–8529 (2014).

    Article  Google Scholar 

  26. Lin, Y.-J., Rose, B. E. & Hwang, Y.-T. Mean state AMOC affects AMOC weakening through subsurface warming in the Labrador Sea. J. Clim. 36, 3895–3915 (2023).

    Article  Google Scholar 

  27. Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).

    Article  Google Scholar 

  28. Jackson, L. & Petit, T. North Atlantic overturning and water mass transformation in CMIP6 models. Clim. Dyn. 60, 2871–2891 (2023).

    Article  Google Scholar 

  29. De Boer, A. M., Gnanadesikan, A., Edwards, N. R. & Watson, A. J. Meridional density gradients do not control the Atlantic overturning circulation. J. Phys. Oceanogr. 40, 368–380 (2010).

    Article  Google Scholar 

  30. Nayak, M. S., Bonan, D. B., Newsom, E. R. & Thompson, A. F. Controls on the strength and structure of the Atlantic meridional overturning circulation in climate models. Geophys. Res. Lett. 51, e2024GL109055 (2024).

    Article  Google Scholar 

  31. Spall, M. A. Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr. 34, 1197–1213 (2004).

    Article  Google Scholar 

  32. Buckley, M. W., Lozier, M. S., Desbruyères, D. & Evans, D. G. Buoyancy forcing and the subpolar Atlantic meridional overturning circulation. Phil. Trans. R. Soc. A 381, 20220181 (2023).

    Article  Google Scholar 

  33. Nikurashin, M. & Vallis, G. A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr. 42, 1652–1667 (2012).

    Article  Google Scholar 

  34. Jansen, M. F., Nadeau, L.-P. & Merlis, T. M. Transient versus equilibrium response of the ocean’s overturning circulation to warming. J. Clim. 31, 5147–5163 (2018).

    Article  Google Scholar 

  35. Sigmond, M., Fyfe, J. C., Saenko, O. A. & Swart, N. C. Ongoing AMOC and related sea-level and temperature changes after achieving the Paris targets. Nat. Clim. Change 10, 672–677 (2020).

    Article  CAS  Google Scholar 

  36. Bonan, D. B., Thompson, A. F., Newsom, E. R., Sun, S. & Rugenstein, M. Transient and equilibrium responses of the Atlantic overturning circulation to warming in coupled climate models: the role of temperature and salinity. J. Clim. 35, 5173–5193 (2022).

    Article  Google Scholar 

  37. Johnson, H. L., Marshall, D. P. & Sproson, D. A. Reconciling theories of a mechanically driven meridional overturning circulation with thermohaline forcing and multiple equilibria. Clim. Dyn. 29, 821–836 (2007).

    Article  Google Scholar 

  38. Forget, G. et al. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. 8, 3071–3104 (2015).

    Article  Google Scholar 

  39. Cunningham, S. A. et al. Temporal variability of the Atlantic meridional overturning circulation at 26.5° N. Science 317, 935–938 (2007).

    Article  CAS  Google Scholar 

  40. Liu, W., Xie, S.-P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Sci. Adv. 3, e1601666 (2017).

    Article  Google Scholar 

  41. Boers, N. Observation-based early-warning signals for a collapse of the Atlantic meridional overturning circulation. Nat. Clim. Change 11, 680–688 (2021).

    Article  Google Scholar 

  42. Ditlevsen, P. & Ditlevsen, S. Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nat. Commun. 14, 4254 (2023).

    Article  CAS  Google Scholar 

  43. Chen, X. & Tung, K.-K. Evidence lacking for a pending collapse of the Atlantic meridional overturning circulation. Nat. Clim. Change 14, 40–42 (2024).

    Article  Google Scholar 

  44. Hofmann, M. & Rahmstorf, S. On the stability of the Atlantic meridional overturning circulation. Proc. Natl Acad. Sci. USA 106, 20584–20589 (2009).

    Article  CAS  Google Scholar 

  45. Mecking, J., Drijfhout, S., Jackson, L. & Andrews, M. The effect of model bias on Atlantic freshwater transport and implications for AMOC bi-stability. Tellus A 69, 1299910 (2017).

    Article  Google Scholar 

  46. Van Westen, R. M. & Dijkstra, H. A. Persistent climate model biases in the Atlantic Ocean’s freshwater transport. Ocean Sci. 20, 549–567 (2024).

    Article  Google Scholar 

  47. Lenaerts, J. T. et al. Representing Greenland ice sheet freshwater fluxes in climate models. Geophys. Res. Lett. 42, 6373–6381 (2015).

    Article  Google Scholar 

  48. Bakker, P. et al. Fate of the Atlantic meridional overturning circulation: strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 43, 12–252 (2016).

    Article  Google Scholar 

  49. He, J., Winton, M., Vecchi, G., Jia, L. & Rugenstein, M. Transient climate sensitivity depends on base climate ocean circulation. J. Clim. 30, 1493–1504 (2017).

    Article  Google Scholar 

  50. Newsom, E., Zanna, L. & Gregory, J. Background pycnocline depth constrains future ocean heat uptake efficiency. Geophys. Res. Lett. 50, e2023GL105673 (2023).

    Article  Google Scholar 

  51. McDougall, T. J. & Barker, P. M. Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. Scor/Iapso WG 127, 1–28 (2011).

    Google Scholar 

  52. Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Oceans 102, 5753–5766 (1997).

    Article  Google Scholar 

  53. Bonan, D. B. et al. Code & data to accompany “Observational constraints imply limited future Atlantic meridional overturning circulation weakening”. Zenodo https://doi.org/10.5281/zenodo.15103083 (2025).

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF) Graduate Research Fellowship Program under NSF Award DGE1745301 (D.B.B.), the Cooperative Institute for Climate, Ocean, and Ecosystem Studies (CICOES) under NOAA Cooperative Agreement NA20OAR4320271, Contribution No. 2025-1450 (D.B.B.), the David and Lucile Packard Foundation and NSF Award OCE-1756956 (A.F.T.), Schmidt Sciences, LLC (T.S. and L.Z.), and NSF Awards OCE-1850900 and AGS-1752796 (K.C.A.).

Author information

Authors and Affiliations

Authors

Contributions

D.B.B. conceived of the project, conducted the analysis, generated the figures and wrote the paper. A.F.T. and T.S. contributed to paper revision and supervised the project. L.Z. and K.C.A. contributed to paper revision and helped interpret results. S.S. contributed to project design and paper revision and helped interpret results.

Corresponding author

Correspondence to David B. Bonan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Wei Cheng and Yen-Ting Hwang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of the AMOC weakening calculated in GCMs and predicted by Eq. (3).

Bar plots showing the residual error between the AMOC weakening calculated in GCMs and predicted by the thermal- wind expression (Eq. 3) for each emission scenario at years 2071–2100.

Extended Data Fig. 2 Contributions of each variable to the intermodel spread in Term B from Eq. (3).

The implied AMOC strength change from Term B at years 2071–2100 of the SSP5-8.5 emission scenario. Each panel shows the magnitude of Term B for each GCM when considering the full intermodel spread of all terms (〈Δyρ〉, H, δH) and from H, δH, and (〈Δyρ〉 separately).

Extended Data Fig. 3 Observed present-day AMOC strength implied by ECCO and the RAPID array.

The present-day annual-mean AMOC strength calculated from ECCO and RAPID array at 26.5∘N. The ECCO period is 1992–2017. The RAPID array period is 2005–2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonan, D.B., Thompson, A.F., Schneider, T. et al. Observational constraints imply limited future Atlantic meridional overturning circulation weakening. Nat. Geosci. 18, 479–487 (2025). https://doi.org/10.1038/s41561-025-01709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-025-01709-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing