Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shear heating during rapid subduction initiation beneath the Samail Ophiolite

Abstract

Metamorphic soles beneath ophiolites are thought to record subduction initiation. However, there is ambiguity about the tectonic and thermal mechanisms operative during subduction initiation, arising partly from uncertainty in the duration of sole metamorphism. Here we use chemical mapping and diffusion speedometry of garnet crystals from the metamorphic sole of the Samail Ophiolite (Oman and United Arab Emirates) to show that high-temperature (≥750 °C) metamorphism was rapid, lasting ≤1 Myr (potentially ≤100 kyr) at peak temperature conditions. The short durations are supported by zircon U–Pb ages and new garnet–whole-rock–zircon Lu–Hf data from the same rocks, contrasting with previous inferences for ≥8 Myr metamorphic durations. These observations are nominally consistent with the spontaneous sinking of a dense lower plate. However, the rapid metamorphic timescales cannot be accounted for solely by conductive thermal equilibration with juxtaposed oceanic mantle. One potential explanation is dissipative heating driven by relative motion across the nascent plate interface. This interpretation accounts for the timescales, the spatial pattern of metamorphism and the global similarities in sole pressure–temperature conditions independent of other geodynamic variables.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geological map and sample textures.
Fig. 2: Garnet chemical maps and transect locations.
Fig. 3: Garnet major-element speedometry.
Fig. 4: Garnet Lu diffusion speedometry.
Fig. 5: Lu–Hf and U–Pb isotopic data.
Fig. 6: Thermal histories of the Samail sole.

Similar content being viewed by others

Data availability

All data supporting the conclusions in this study (Supplementary Tables 17) are freely available online at https://doi.org/10.17605/OSF.IO/ZNT7S (ref. 63).

References

  1. Agard, P. et al. Plate interface rheological switches during subduction infancy: control on slab penetration and metamorphic sole formation. Earth Planet. Sci. Lett. 451, 208–220 (2016).

    Article  CAS  Google Scholar 

  2. Searle, M. P. & Cox, J. Subduction zone metamorphism during formation and emplacement of the Semail ophiolite in the Oman Mountains. Geol. Mag. 139, 241–255 (2002).

    Article  CAS  Google Scholar 

  3. Guilmette, C. et al. Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nat. Geosci. 11, 688–695 (2018).

    Article  CAS  Google Scholar 

  4. Lallemand, S. & Arcay, D. Subduction initiation from the earliest stages to self-sustained subduction: insights from the analysis of 70 Cenozoic sites. Earth Sci. Rev. 221, 103779 (2021).

    Article  Google Scholar 

  5. Zhou, X. & Wada, I. Differentiating induced versus spontaneous subduction initiation using thermomechanical models and metamorphic soles. Nat. Commun. 12, 4632 (2021).

    Article  CAS  Google Scholar 

  6. Duretz, T. et al. Thermo-mechanical modeling of the obduction process based on the Oman Ophiolite case. Gondwana Res. 32, 1–10 (2016).

    Article  Google Scholar 

  7. Gurnis, M., Hall, C. & Lavier, L. Evolving force balance during incipient subduction. Geochem. Geophys. Geosyst. 5, Q07001 (2004).

    Article  Google Scholar 

  8. Leng, W. & Gurnis, M. Dynamics of subduction initiation with different evolutionary pathways. Geochem. Geophys. Geosyst. 12, Q12018 (2011).

    Article  Google Scholar 

  9. Maunder, B., Prytulak, J., Goes, S. & Reagan, M. Rapid subduction initiation and magmatism in the Western Pacific driven by internal vertical forces. Nat. Commun. 11, 1874 (2020).

    Article  CAS  Google Scholar 

  10. Soret, M., Agard, P., Dubacq, B., Plunder, A. & Yamato, P. Petrological evidence for stepwise accretion of metamorphic soles during subduction infancy (Semail ophiolite, Oman and UAE). J. Metamorph. Geol. 35, 1051–1080 (2017).

    Article  Google Scholar 

  11. Dewey, J. F. & Casey, J. F. The sole of an ophiolite: the Ordovician Bay of Islands Complex, Newfoundland. J. Geol. Soc. 170, 715–722 (2013).

    Article  Google Scholar 

  12. Rioux, M. et al. Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: new constraints on the tectonic evolution during ophiolite formation from high-precision U–Pb zircon geochronology. Earth Planet. Sci. Lett. 451, 185–195 (2016).

    Article  CAS  Google Scholar 

  13. Rioux, M. et al. High-precision U–Pb zircon dating of late magmatism in the Samail Ophiolite: a record of subduction initiation. J. Geophys. Res. Solid Earth 126, e2020JB020758 (2021).

    Article  CAS  Google Scholar 

  14. Rioux, M. et al. The temporal evolution of subduction initiation in the Samail ophiolite: high-precision U–Pb zircon petrochronology of the metamorphic sole. J. Metamorph. Geol. 41, 817–847 (2023).

    Article  CAS  Google Scholar 

  15. Rioux, M. et al. Rapid crustal accretion and magma assimilation in the Oman–U.A.E. ophiolite: high precision U–Pb zircon geochronology of the gabbroic crust. J. Geophys. Res. 117, B07201 (2012).

    Google Scholar 

  16. Rioux, M. et al. Tectonic development of the Samail ophiolite: high-precision U–Pb zircon geochronology and Sm–Nd isotopic constraints on crustal growth and emplacement. J. Geophys. Res. Solid Earth 118, 2085–2101 (2013).

    Article  CAS  Google Scholar 

  17. Reagan, M. K. et al. Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth Planet. Sci. Lett. 506, 520–529 (2019).

    Article  CAS  Google Scholar 

  18. Ishizuka, O. et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth Planet. Sci. Lett. 306, 229–240 (2011).

    Article  CAS  Google Scholar 

  19. Arculus, R. J. et al. A record of spontaneous subduction initiation in the Izu–Bonin–Mariana arc. Nat. Geosci. 8, 728–733 (2015).

    Article  CAS  Google Scholar 

  20. Soret, M. et al. Timescales of subduction initiation and evolution of subduction thermal regimes. Earth Planet. Sci. Lett. 584, 117521 (2022).

    Article  CAS  Google Scholar 

  21. Roberts, N. M. W., Thomas, R. J. & Jacobs, J. Geochronological constraints on the metamorphic sole of the Semail ophiolite in the United Arab Emirates. Geosci. Front. 7, 609–619 (2016).

    Article  CAS  Google Scholar 

  22. Hacker, B. R. & Mosenfelder, J. L. Metamorphism and deformation along the emplacement thrust of the Samail ophiolite, Oman. Earth Planet. Sci. Lett. 144, 435–451 (1996).

    Article  CAS  Google Scholar 

  23. Hacker, B. R., Mosenfelder, J. L. & Gnos, E. Rapid emplacement of the Oman ophiolite: thermal and geochronologic constraints. Tectonics 15, 1230–1247 (1996).

    Article  Google Scholar 

  24. Searle, M., Rioux, M. & Garber, J. M. One line on the map: a review of the geological history of the Semail Thrust, Oman–UAE mountains. J. Struct. Geol. 158, 104594 (2022).

    Article  Google Scholar 

  25. Garber, J. M. et al. Petrochronology of Wadi Tayin metamorphic sole metasediment, with implications for the thermal and tectonic evolution of the Samail Ophiolite (Oman/UAE). Tectonics 39, e2020TC006135 (2020).

    Article  Google Scholar 

  26. Ishikawa, T., Fujisawa, S., Nagaishi, K. & Masuda, T. Trace element characteristics of the fluid liberated from amphibolite-facies slab: inference from the metamorphic sole beneath the Oman ophiolite and implication for boninite genesis. Earth Planet. Sci. Lett. 240, 355–377 (2005).

    Article  CAS  Google Scholar 

  27. Ambrose, T. K., Waters, D. J., Searle, M. P., Gopon, P. & Forshaw, J. B. Burial, accretion, and exhumation of the metamorphic sole of the Oman–UAE Ophiolite. Tectonics 40, e2020TC006392 (2021).

    Article  Google Scholar 

  28. Gnos, E. Peak metamorphic conditions of garnet amphibolites beneath the Semail Ophiolite: implications for an inverted pressure gradient. Int. Geol. Rev. 40, 281–304 (1998).

    Article  Google Scholar 

  29. Soret, M. et al. Deformation mechanisms in mafic amphibolites and granulites: record from the Semail metamorphic sole during subduction infancy. Solid Earth 10, 1733–1755 (2019).

    Article  Google Scholar 

  30. Cowan, R. J., Searle, M. P. & Waters, D. J. Structure of the metamorphic sole to the Oman Ophiolite, Sumeini Window and Wadi Tayyin: implications for ophiolite obduction processes. Geol. Soc. Lond. Spec. Publ. 392, 155–175 (2014).

    Article  CAS  Google Scholar 

  31. Krogh, E. J. The garnet–clinopyroxene Fe–Mg geothermometer—a reinterpretation of existing experimental data. Contrib. Mineral. Petrol. 99, 44–48 (1988).

    Article  CAS  Google Scholar 

  32. Ravna, K. The garnet–clinopyroxene Fe2+–Mg geothermometer: an updated calibration. J. Metamorph. Geol. 18, 211–219 (2000).

    Article  CAS  Google Scholar 

  33. Sun, C. & Liang, Y. A REE-in-garnet–clinopyroxene thermobarometer for eclogites, granulites and garnet peridotites. Chem. Geol. 393–394, 79–92 (2015).

    Article  Google Scholar 

  34. Pickles, J. R., Blundy, J. D. & Brooker, R. A. Trace element thermometry of garnet–clinopyroxene pairs. Am. Mineral. 101, 1438–1450 (2016).

    Article  Google Scholar 

  35. Caddick, M. J., Konopásek, J. & Thompson, A. B. Preservation of garnet growth zoning and the duration of prograde metamorphism. J. Petrol. 51, 2327–2347 (2010).

    Article  CAS  Google Scholar 

  36. Wu, L.-G., Li, Y., Jollands, M. C., Vermeesch, P. & Li, X.-H. Diffuser: a user-friendly program for diffusion chronometry with robust uncertainty estimation. Comput. Geosci. 163, 105108 (2022).

    Article  CAS  Google Scholar 

  37. Carlson, W. D. Rates of Fe, Mg, Mn, and Ca diffusion in garnet. Am. Mineral. 91, 1–11 (2006).

    Article  CAS  Google Scholar 

  38. Chakraborty, S. & Ganguly, J. Cation diffusion in aluminosilicate garnets: experimental determination in spessartine–almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contrib. Mineral. Petrol. 111, 74–86 (1992).

    Article  CAS  Google Scholar 

  39. Vielzeuf, D., Baronnet, A., Perchuk, A. L., Laporte, D. & Baker, M. B. Calcium diffusivity in alumino-silicate garnets: an experimental and ATEM study. Contrib. Mineral. Petrol. 154, 153–170 (2007).

    Article  CAS  Google Scholar 

  40. Chu, X. & Ague, J. J. Analysis of experimental data on divalent cation diffusion kinetics in aluminosilicate garnets with application to timescales of peak Barrovian metamorphism, Scotland. Contrib. Mineral. Petrol. 170, 25 (2015).

    Article  Google Scholar 

  41. Bloch, E. M. et al. Multispecies diffusion of yttrium, rare earth elements and hafnium in garnet. J. Petrol. 61, egaa055 (2020).

    Article  CAS  Google Scholar 

  42. Cherniak, D. J. Yb and Y diffusion in grossular garnet. Geochem. Cosmochim. Acta 69, 405 (2005).

    Google Scholar 

  43. Carlson, W. D. Rates and mechanism of Y, REE, and Cr diffusion in garnet. Am. Mineral. 97, 1598–1618 (2012).

    Article  CAS  Google Scholar 

  44. Ague, J. J. & Baxter, E. F. Brief thermal pulses during mountain building recorded by Sr diffusion in apatite and multicomponent diffusion in garnet. Earth Planet. Sci. Lett. 261, 500–516 (2007).

    Article  CAS  Google Scholar 

  45. Konrad-Schmolke, M. et al. Discrimination of thermodynamic and kinetic contributions to the heavy rare earth element patterns in metamorphic garnet. J. Metamorph. Geol. 41, 465–490 (2023).

    Article  CAS  Google Scholar 

  46. Kotowski, A. J., Cloos, M., Stockli, D. F. & Bos Orent, E. Structural and thermal evolution of an infant subduction shear zone: insights from sub-ophiolite metamorphic rocks recovered from Oman Drilling Project Site BT-1B. J. Geophys. Res. Solid Earth 126, e2021JB021702 (2021).

    Article  Google Scholar 

  47. England, P. C. & Smye, A. J. Metamorphism and deformation on subduction interfaces: 1. Physical framework. Geochem. Geophys. Geosyst. 24, e2022GC010644 (2023).

    Article  CAS  Google Scholar 

  48. Duprat-Oualid, S., Yamato, P. & Schmalholz, S. M. A dimensional analysis to quantify the thermal budget around lithospheric-scale shear zones. Terra Nova 27, 163–168 (2015).

    Article  Google Scholar 

  49. Agard, P. et al. Slabitization: mechanisms controlling subduction development and viscous coupling. Earth Sci. Rev. 208, 103259 (2020).

    Article  CAS  Google Scholar 

  50. Lanari, P. et al. XMapTools: a MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comput. Geosci. 62, 227–240 (2014).

    Article  CAS  Google Scholar 

  51. Woodhead, J. D., Hellstrom, J., Hergt, J. M., Greig, A., & Maas, R. Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 31, 331–343 (2007).

    Article  CAS  Google Scholar 

  52. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. Spectrom. 26, 2508–2518 (2011).

    Article  CAS  Google Scholar 

  53. Paul, B. et al. CellSpace: a module for creating spatially registered laser ablation images within the Iolite freeware environment. J. Anal. At. Spectrom. 27, 700–706 (2012).

    Article  CAS  Google Scholar 

  54. Pearce, N. J. G. et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newsl. 21, 115–144 (1997).

    Article  CAS  Google Scholar 

  55. Jochum, K. P. et al. MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem. Geophys. Geosyst. 7, Q02008 (2006).

    Article  Google Scholar 

  56. Onsager, L. Theories and problems of liquid diffusion. Ann. N. Y. Acad. Sci. 46, 241–265 (1945).

    Article  CAS  Google Scholar 

  57. Lasaga, A. C. Multicomponent exchange and diffusion in silicates. Geochim. Cosmochim. Acta 43, 455–469 (1979).

    Article  CAS  Google Scholar 

  58. Johnson, T. A., Vervoort, J. D., Ramsey, M. J., Aleinikoff, J. N. & Southworth, S. Constraints on the timing and duration of orogenic events by combined Lu–Hf and Sm–Nd geochronology: an example from the Grenville orogeny. Earth Planet. Sci. Lett. 501, 152–164 (2018).

    Article  CAS  Google Scholar 

  59. Ludwig, K. R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center, 2003).

  60. Vermeesch, P. IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493 (2018).

    Article  CAS  Google Scholar 

  61. Söderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 219, 311–324 (2004).

    Article  Google Scholar 

  62. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).

    Article  CAS  Google Scholar 

  63. Garber, J. M. et al. Shear heating during rapid subduction initiation beneath the Samail Ophiolite. Open Science Framework https://doi.org/10.17605/OSF.IO/ZNT7S (2025).

Download references

Acknowledgements

We thank the Director General of Minerals, Ministry of Commerce and Industry of the Sultanate of Oman for allowing us to conduct fieldwork in the Sultanate of Oman. K. Crispin is thanked for EPMA assistance; A. Nikitin is thanked for assistance with 171213J02 Lu–Hf sample preparation; J. Cottle, A. Kylander-Clark, T. Mittal, R. Parrish and J. Wakabayashi are thanked for discussions regarding the paper. This research was supported by National Science Foundation grant EAR-2120931 to J.M.G. and A.J.S., National Science Foundation grants EAR-1250522 and EAR-1650407 to M.R. and The Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Contributions

J.M.G., M.R. and A.J.S. conceived the study. J.M.G. and M.R. carried out sample collection and preparation. J.M.G. performed petrographic analysis, LA-ICP-MS spot analyses, major-element and REE thermometry, Lu diffusion speedometry, and supervised EPMA mapping; A.M.C.-U. and J.M.G. performed LA-ICP-MS mapping; P.L.B. and J.D.V. performed Lu–Hf isotopic data collection; M.D.F. performed quantitative EPMA spot transects; and A.J.S. performed the garnet major-element diffusion speedometry and thermal–kinematic modelling. J.M.G. wrote the original manuscript; all authors contributed to final data interpretation and paper writing.

Corresponding author

Correspondence to Joshua M. Garber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Thomas Lapen, John Platt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Texts 1–3, captions for Supplementary Tables 1–7 and references.

Supplementary Tables 1–7

Supplementary Table 1: Lu–Hf data summary. Supplementary Table 2: Major-element profile of WT garnet for diffusion speedometry. Supplementary Table 3: Granulite-facies garnet and clinopyroxene major-element compositions used for Fe–Mg thermometry. Supplementary Table 4: Core profile of Lu concentration for sample WT15 diffusion speedometry. Supplementary Table 5: Rim profile of Lu concentration for sample WT15 diffusion speedometry. Supplementary Table 6: Rim profile of Lu concentration for sample J02 diffusion speedometry. Supplementary Table 7: Granulite-facies garnet and clinopyroxene major-element compositions used for REE thermometry.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garber, J.M., Rioux, M., Smye, A.J. et al. Shear heating during rapid subduction initiation beneath the Samail Ophiolite. Nat. Geosci. 18, 653–660 (2025). https://doi.org/10.1038/s41561-025-01711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-025-01711-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing