Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Climate-driven global cropland changes and consequent feedbacks

Abstract

The interdependence of climate change and agricultural land use remains a critical, yet unquantified, area of concern for future food production. Here we determine climate-driven cropland change based on an empirical model of cropland response to changes in agricultural productivity. By estimating counterfactual total factor productivity in a scenario without climate change, we find that 88 million hectares (90% confidence interval (CI) 5–179 Mha), or 6.3% (90% CI 3.6–12.8%) of the cropland currently used in 110 countries, can be attributed to climate change via reduced agricultural productivity growth over 1992–2020. This area exceeds the observed 3.9% net cropland expansion in the studied countries, indicating that total cropland area would have decreased in the absence of climate effects. The release of about 21.8 GtCO2 (lower/upper bound: 4.4–41.4 GtCO2) could have been prevented without climate-driven cropland change, accounting for about 18.9% (3.8–35.9%) of land-use change emissions in these countries. Climate-driven cropland change also triggered noticeably warmer and drier local climate feedback in some regions, with potential repercussions for food security. The substantial emissions will probably impose further long-term negative impacts on agricultural efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in TFP and cropland area during 1992–2020.
Fig. 2: Cumulative changes in cropland area and sources of change.
Fig. 3: Carbon emissions due to climate-driven cropland change during 1992–2020.
Fig. 4: The effects of climate-driven cropland change on daily average LST and annual precipitation during 1992–2020.

Similar content being viewed by others

Data availability

All data used in this study are publicly available, as described in Methods. Briefly, TFP growth data are available at https://www.ers.usda.gov/data-products/international-agricultural-productivity; agricultural trade data before 2008 from the GTAP 8 database can be accessed through the free demo version of the GTAPAgg package (https://www.gtap.agecon.purdue.edu/databases/v8/default.asp); balanced OECD trade data from 2007 to 2018 are available at https://www.oecd.org/sdd/its/balanced-trade-statistics.htm; FAO cropland area and gross agricultural production are available at https://www.fao.org/faostat/en/#data; CCI-LC land-cover maps are available at https://maps.elie.ucl.ac.be/CCI/viewer/download.php; the 300-m harmonized global map of above- and below-ground biomass carbon density in the year 2010 is available at https://doi.org/10.3334/ORNLDAAC/1763; the SOC density map is available at https://github.com/whrc/Soil-Carbon-Debt; the dataset of potential biophysical effects of vegetation cover change is available at https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/ECOCLIM/Biophysical-effects-vgt-change/v2.0/; the ERA5 model level data can be downloaded through the CDS API (https://confluence.ecmwf.int/display/CKB/How+to+download+ERA5); the multi-source satellite-based precipitation dataset is summarized in Supplementary Table 4.

Code availability

The full codes used to analyse the data, reproduce the results and create the main figures are available and reproducible at https://codeocean.com/capsule/9316102/tree. The original code to perform the analysis of cropland response to TFP growth39 is available in the supporting information provided at https://doi.org/10.1093/ajae/aay088. The original code to reproduce the analysis of climate effects on TFP15 is available at https://doi.org/10.6077/pfsd-0v93. The Python interface to LAGRANTO can be found at https://git.iac.ethz.ch/atmosdyn/Lagranto. The pyGAM package for building generalized additive models can be found at https://pygam.readthedocs.io/en/latest/notebooks/tour_of_pygam.html#Regression.

References

  1. Huber, V., Neher, I., Bodirsky, B. L., Höfner, K. & Schellnhuber, H. J. Will the world run out of land? A Kaya-type decomposition to study past trends of cropland expansion. Environ. Res. Lett. 9, 024011 (2014).

    Article  Google Scholar 

  2. Villoria, N. Consequences of agricultural total factor productivity growth for the sustainability of global farming: accounting for direct and indirect land use effects. Environ. Res. Lett. 14, 125002 (2019).

    Article  Google Scholar 

  3. Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2021).

    Article  Google Scholar 

  4. Eigenbrod, F. et al. Identifying agricultural frontiers for modeling global cropland expansion. One Earth 3, 504–514 (2020).

    Article  Google Scholar 

  5. Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    Article  CAS  Google Scholar 

  6. Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 377, eabm9267 (2022).

    Article  CAS  Google Scholar 

  7. Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).

    Article  CAS  Google Scholar 

  8. Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2020).

    Article  Google Scholar 

  9. Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Article  CAS  Google Scholar 

  10. Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).

    Article  CAS  Google Scholar 

  11. Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  Google Scholar 

  12. Peng, L. Q., Searchinger, T. D., Zionts, J. & Waite, R. The carbon costs of global wood harvests. Nature 620, 110–115 (2023).

    Article  CAS  Google Scholar 

  13. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article  CAS  Google Scholar 

  14. Lesk, C. et al. Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).

    Article  Google Scholar 

  15. Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobel, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11, 306–U328 (2021).

    Article  Google Scholar 

  16. Bajželj, B. & Richards, K. S. The positive feedback loop between the impacts of climate change and agricultural expansion and relocation. Land 3, 898–916 (2014).

    Article  Google Scholar 

  17. Zaveri, E., Russ, J. & Damania, R. Rainfall anomalies are a significant driver of cropland expansion. Proc. Natl. Acad. Sci. USA 117, 10225–10233 (2020).

    Article  CAS  Google Scholar 

  18. Kennedy, J., Hurtt, G. C., Liang, X.-Z., Chini, L. & Ma, L. Changing cropland in changing climates: quantifying two decades of global cropland changes. Environ. Res. Lett. 18, 064010 (2023).

    Article  Google Scholar 

  19. Lobell, D. B. & Villoria, N. B. Reduced benefits of climate-smart agricultural policies from land-use spillovers. Nat. Sustain 6, 941–948 (2023).

    Article  Google Scholar 

  20. Stevenson, J. R., Villoria, N., Byerlee, D., Kelley, T. & Maredia, M. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc. Natl. Acad. Sci. USA 110, 8363–8368 (2013).

    Article  CAS  Google Scholar 

  21. Ewers, R. M., Scharlemann, J. P., Balmford, A. & Green, R. E. Do increases in agricultural yield spare land for nature? Glob. Change Biol. 15, 1716–1726 (2009).

    Article  Google Scholar 

  22. García, V. R., Gaspart, F., Kastner, T. & Meyfroidt, P. Agricultural intensification and land use change: assessing country-level induced intensification, land sparing and rebound effect. Environ. Res. Lett. 15, 085007 (2020).

    Article  Google Scholar 

  23. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    Article  CAS  Google Scholar 

  24. Hertel, T. W., Ramankutty, N. & Baldos, U. L. C. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proc. Natl Acad. Sci. USA 111, 13799–13804 (2014).

    Article  CAS  Google Scholar 

  25. Kastner, T., Erb, K.-H. & Haberl, H. Rapid growth in agricultural trade: effects on global area efficiency and the role of management. Environ. Res. Lett. 9, 034015 (2014).

    Article  Google Scholar 

  26. Meyfroidt, P. et al. Focus on leakage and spillovers: informing land-use governance in a tele-coupled world. Environ. Res. Lett. 15, 090202 (2020).

    Article  Google Scholar 

  27. Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014).

    Article  Google Scholar 

  28. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  CAS  Google Scholar 

  29. Mahmood, R. et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 34, 929–953 (2014).

    Article  Google Scholar 

  30. Chen, C. et al. Biophysical effects of croplands on land surface temperature. Nat. Commun. 15, 10901 (2024).

    Article  Google Scholar 

  31. Bright, R. M. et al. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Change 7, 296–302 (2017).

    Article  Google Scholar 

  32. Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).

    Article  Google Scholar 

  33. Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).

    Article  CAS  Google Scholar 

  34. Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).

    Article  Google Scholar 

  35. Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2014).

    Article  Google Scholar 

  36. Smith, C., Baker, J. C. A. & Spracklen, D. V. Tropical deforestation causes large reductions in observed precipitation. Nature 615, 270–275 (2023).

    Article  CAS  Google Scholar 

  37. Meier, R. et al. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 14, 473–478 (2021).

    Article  CAS  Google Scholar 

  38. Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

    Article  CAS  Google Scholar 

  39. Villoria, N. B. Technology spillovers and land use change: empirical evidence from global agriculture. Am. J. Agric. Econ. 101, 870–893 (2019).

    Article  Google Scholar 

  40. Zhu, L. et al. Comparable biophysical and biogeochemical feedbacks on warming from tropical moist forest degradation. Nat. Geosci. 16, 244–249 (2023).

    Article  CAS  Google Scholar 

  41. Emissions from Forests, FAOSTAT, https://www.fao.org/faostat/en/#data/GF (2023).

  42. Jones, M. W. et al. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Sci. Data 10, 155 (2023).

    Article  CAS  Google Scholar 

  43. Yang, Y. et al. Climate change exacerbates the environmental impacts of agriculture. Science 385, eadn3747 (2024).

    Article  CAS  Google Scholar 

  44. Johnson, J. A. et al. Investing in nature can improve equity and economic returns. Proc. Natl Acad. Sci. USA 120, e2220401120 (2023).

    Article  CAS  Google Scholar 

  45. Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    Article  CAS  Google Scholar 

  46. D’Odorico, P., Carr, J. A., Laio, F., Ridolfi, L. & Vandoni, S. Feeding humanity through global food trade. Earths Future 2, 458–469 (2014).

    Article  Google Scholar 

  47. Van Ittersum, M. K. et al. Can sub-Saharan Africa feed itself? Proc. Natl Acad. Sci. USA 113, 14964–14969 (2016).

    Article  Google Scholar 

  48. Fuglie, K. O. Is a slowdown in agricultural productivity growth contributing to the rise in commodity prices? Agric. Econ. 39, 431–441 (2008).

    Article  Google Scholar 

  49. Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).

    Article  CAS  Google Scholar 

  50. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article  CAS  Google Scholar 

  51. Coomes, O. T., Barham, B. L., MacDonald, G. K., Ramankutty, N. & Chavas, J. P. Leveraging total factor productivity growth for sustainable and resilient farming. Nat. Sustain. 2, 22–28 (2019).

    Article  Google Scholar 

  52. Garrett, R. D. et al. Criteria for effective zero-deforestation commitments. Glob. Environ. Change 54, 135–147 (2019).

    Article  Google Scholar 

  53. Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).

    Article  Google Scholar 

  54. Davis, K. F., Rulli, M. C., Seveso, A. & D’Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 10, 919–924 (2017).

    Article  CAS  Google Scholar 

  55. Fuglie, K. O., Hertel, T. W., Lobell, D. B. & Villoria, N. B. Agricultural productivity and climate mitigation. Annu. Rev. Resour. Econ. 16, 21–40 (2024).

    Article  Google Scholar 

  56. Hertel, T. W., Baldos, U. L. & Fuglie, K. O. Trade in technology: a potential solution to the food security challenges of the 21st century. Eur. Econ. Rev. 127, 103479 (2020).

    Article  Google Scholar 

  57. Defourny, P. et al. Land Cover Climate Change Initiative—Product User Guide Version 2.0 (ESA, UC Louvain and Geomatics, 2017).

  58. Tubiello, F. N. et al. A new cropland area database by country circa 2020. Earth Syst. Sci. Data 15, 4997–5015 (2023).

    Article  Google Scholar 

  59. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  60. Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).

    Article  CAS  Google Scholar 

  61. Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).

    Article  Google Scholar 

  62. Alkama, R. et al. Vegetation-based climate mitigation in a warmer and greener World. Nat. Commun. 13, 606 (2022).

    Article  CAS  Google Scholar 

  63. Sprenger, M. & Wernli, H. The LAGRANTO Lagrangian analysis tool—version 2.0. Geosci. Model Dev. 8, 2569–2586 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Tilman and L. Liu for helpful suggestions and comments for the manuscript development.

Author information

Authors and Affiliations

Authors

Contributions

Z.J., N.Y. and J.T. conceived and designed the work. N.Y. and J.T. jointly led the analysis, ran the models, generated figures and tables and drafted the initial paper with input from Z.J., D.B.L., P.Z. and P.C.W. M.S. and N.B.V. contributed to the development of methods and models. H.K., W.L., P.L. and Y.Y. contributed to the interpretation of the results. All authors contributed to writing and revision.

Corresponding author

Correspondence to Zhenong Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Oz Kira, Karina Winkler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Xujia Jiang, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The schematic workflow diagram.

The schematic workflow diagram for the analysis. Here, ΔTFP, ΔCropland, ΔLST and ΔP represents climate impacts on TFP, climate-driven cropland change, and associated changes in Land Surface Temperature (LST) and precipitation, respectively. f refers to generalized additive models (GAMs), which are used to model the precipitation response to local and upwind land cover change (Precip-LC linkage). The details of the equations displayed here can be found in the Methods (Eqs. 4, 5, 7, and 10). Basemaps in 3 are from Natural Earth (https://www.naturalearthdata.com/).

Extended Data Fig. 2 The confidence intervals of climate-driven cropland change.

90% confidence intervals (CI) of climate-driven cropland change by (a) country and by (b) decade. Note that CI per country is expressed in percentages because elasticities provide the percentage change in cropland area in response to a certain percentage change in TPF. CI was estimated using bootstrapping with 500 replicates (n = 500). Basemap in a is from Natural Earth (https://www.naturalearthdata.com/).

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Tables 1–7 and Text 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, N., Till, J., Lobell, D.B. et al. Climate-driven global cropland changes and consequent feedbacks. Nat. Geosci. 18, 639–645 (2025). https://doi.org/10.1038/s41561-025-01724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-025-01724-1

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene