Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regional aerosol warming enhanced by the diurnal cycle of low cloud

Abstract

Atmospheric aerosols are an important component of the Earth’s climate system and contribute substantial uncertainties to predictions of future climate change. In the southeast Atlantic, where expansive light-absorbing smoke aerosol plumes overlie semi-permanent stratocumulus clouds, the direct aerosol radiative effect (DARE) induces warming, but the magnitude of this effect varies widely among climate models. Thus, it is essential to improve estimates based on observations to help constrain model uncertainties. However, the impact of the observed cloud diurnal cycle on DARE remains unclear. Here we quantify DARE using radiative transfer modelling based on hourly satellite observations of clouds focusing on the region 20° S–0° and 10° W–15° E. We find that accounting for the observed cloud diurnal cycle over the southeast Atlantic, rather than assuming a constant early-afternoon cloud field throughout the entire day, results in a more than twofold increase (+1.7 ± 0.4 W m−2) in the regional mean aerosol radiative warming. The increase in DARE results from morning hours when cloud fractions and optical depths are higher. Neglect of the cloud diurnal cycle adds to the underestimated radiative warming in the southeast Atlantic associated with underestimated aerosol absorption among climate models. Future observations-based estimates of aerosol climatic effects need to account for the cloud diurnal cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biomass burning aerosols above low-level cloud over the southeast Atlantic.
Fig. 2: Monthly mean daytime cycles of the COD and CF.
Fig. 3: Monthly mean diurnal cycles of DARETOA.
Fig. 4: Equivalent DARE uncertainties when the cloud diurnal cycle is neglected during 2016–2018.
Fig. 5: Monthly mean differences in DARETOA between varying and fixed cloud properties.

Similar content being viewed by others

Data availability

The VIIRS satellite images were adapted from NASA Worldview (https://worldview.earthdata.nasa.gov/). The SEVIRI cloud data are available from NASA SatCORPS at https://satcorps.larc.nasa.gov/. The MERRA-2 data are available from NASA GES DISC at https://disc.gsfc.nasa.gov/datasets/M2I3NVAER_5.12.4/summary. The processed data used to present the results in this Article are available via Zenodo at https://doi.org/10.5281/zenodo.15540263 (ref. 60).

Code availability

The codes used to generate figures in this publication are available via Zenodo at https://doi.org/10.5281/zenodo.15540263 (ref. 60).

References

  1. Ramanathan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001).

    Article  CAS  Google Scholar 

  2. Hansen, J. et al. Efficacy of climate forcings. J. Geophys. Res. 110, D18104 (2005).

    Google Scholar 

  3. Isaksen, I. S. A. et al. Atmospheric composition change: climate–chemistry interactions. Atmos. Environ. 43, 5138–5192 (2009).

    Article  CAS  Google Scholar 

  4. Bellouin, N. et al. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. https://doi.org/10.1029/2019rg000660 (2020).

  5. McCormick, R. A. & Ludwig, J. H. Climate modification by atmospheric aerosols. Science 156, 1358–1359 (1967).

    Article  CAS  Google Scholar 

  6. Wood, R. & Hartmann, D. L. Spatial variability of liquid water path in marine low cloud: the importance of mesoscale cellular convection. J. Clim. 19, 1748–1764 (2006).

    Article  Google Scholar 

  7. Twomey, S. Pollution and the planetary albedo. Atmos. Environ. 8, 1251–1256 (1974).

    Article  Google Scholar 

  8. Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1149–1152 (1977).

    Article  Google Scholar 

  9. Yu, H. et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys. 6, 613–666 (2006).

    Article  CAS  Google Scholar 

  10. Myhre, G. et al. Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean. Tellus B 59, 115–129 (2007).

    Article  Google Scholar 

  11. Su, W., Loeb, N. G., Schuster, G. L., Chin, M. & Rose, F. G. Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations. J. Geophys. Res. Atmos. 118, 655–669 (2013).

    Article  CAS  Google Scholar 

  12. Zhang, Z. et al. Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations. Atmos. Chem. Phys. 16, 2877–2900 (2016).

    Article  CAS  Google Scholar 

  13. Oikawa, E., Nakajima, T. & Winker, D. An evaluation of the shortwave direct aerosol radiative forcing using CALIOP and MODIS observations. J. Geophys. Res. Atmos. 123, 1211–1233 (2018).

    Article  Google Scholar 

  14. Kacenelenbogen, M. S. et al. Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors. Atmos. Chem. Phys. 19, 4933–4962 (2019).

    Article  CAS  Google Scholar 

  15. Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 923–1054 (IPCC, Cambridge Univ. Press, 2023).

  16. Haywood, J. M. et al. The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign. Atmos. Chem. Phys. 21, 1049–1084 (2021).

    Article  CAS  Google Scholar 

  17. Oikawa, E., Nakajima, T., Inoue, T. & Winker, D. A study of the shortwave direct aerosol forcing using ESSP/CALIPSO observation and GCM simulation. J. Geophys. Res. Atmos. 118, 3687–3708 (2013).

    Article  Google Scholar 

  18. Zhang, Z. et al. A novel method for estimating shortwave direct radiative effect of above-cloud aerosols using CALIOP and MODIS data. Atmos. Meas. Tech. 7, 1777–1789 (2014).

    Article  Google Scholar 

  19. Matus, A. V., L’Ecuyer, T. S., Kay, J. E., Hannay, C. & Lamarque, J.-F. The role of clouds in modulating global aerosol direct radiative effects in spaceborne active observations and the Community Earth System Model. J. Clim. 28, 2986–3003 (2015).

    Article  Google Scholar 

  20. Lacagnina, C., Hasekamp, O. P. & Torres, O. Direct radiative effect of aerosols based on PARASOL and OMI satellite observations. J. Geophys. Res. Atmos. 122, 2366–2388 (2017).

    Article  Google Scholar 

  21. Matus, A. V., L’Ecuyer, T. S. & Henderson, D. S. New estimates of aerosol direct radiative effects and forcing from A‐Train satellite observations. Geophys. Res. Lett. 46, 8338–8346 (2019).

    Article  Google Scholar 

  22. de Graaf, M. et al. Comparison of south-east Atlantic aerosol direct radiative effect over clouds from SCIAMACHY, POLDER and OMI–MODIS. Atmos. Chem. Phys. 20, 6707–6723 (2020).

    Article  Google Scholar 

  23. Thorsen, T. J., Ferrare, R. A., Kato, S. & Winker, D. M. Aerosol direct radiative effect sensitivity analysis. J. Clim. 33, 6119–6139 (2020).

    Article  Google Scholar 

  24. Min, M. & Zhang, Z. On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing. J. Quant. Spectrosc. Radiat. Transf. 142, 25–36 (2014).

    Article  CAS  Google Scholar 

  25. Adebiyi, A. A., Zuidema, P. & Abel, S. J. The convolution of dynamics and moisture with the presence of shortwave absorbing aerosols over the southeast Atlantic. J. Climate 28, 1997–2024 (2015).

    Article  Google Scholar 

  26. Chang, I. et al. On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic. Atmos. Chem. Phys. 23, 4283–4309 (2023).

    Article  CAS  Google Scholar 

  27. Zuidema, P. et al. Smoke and clouds above the southeast Atlantic: upcoming field campaigns probe absorbing aerosol’s impact on climate. Bull. Am. Meteorol. Soc. 97, 1131–1135 (2016).

    Article  Google Scholar 

  28. Formenti, P. et al. The aerosols, radiation and clouds in southern Africa field campaign in Namibia: overview, illustrative observations, and way forward. Bull. Am. Meteorol. Soc. 100, 1277–1298 (2019).

    Article  Google Scholar 

  29. Redemann, J. et al. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin. Atmos. Chem. Phys. 21, 1507–1563 (2021).

    Article  CAS  Google Scholar 

  30. Jethva, H., Torres, O., Remer, L. A. & Bhartia, P. K. A color ratio method for simultaneous retrieval of aerosol and cloud optical thickness of above-cloud absorbing aerosols from passive sensors: application to MODIS measurements. IEEE Trans. Geosci. Remote Sens. 51, 3862–3870 (2013).

    Article  Google Scholar 

  31. Jethva, H., Torres, O., Waquet, F., Chand, D. & Hu, Y. How do A-train sensors intercompare in the retrieval of above-cloud aerosol optical depth? A case study-based assessment. Geophys. Res. Lett. 41, 2013GL058405 (2014).

    Article  Google Scholar 

  32. Chang, I. & Christopher, S. A. Identifying absorbing aerosols above clouds from the Spinning Enhanced Visible and Infrared Imager coupled with NASA A-Train multiple sensors. IEEE Trans. Geosci. Remote Sens. 54, 3163–3173 (2016).

    Article  Google Scholar 

  33. Chang, I. et al. Spatiotemporal heterogeneity of aerosol and cloud properties over the southeast Atlantic: an observational analysis. Geophys. Res. Lett. https://doi.org/10.1029/2020GL091469 (2021).

  34. Chand, D., Wood, R., Anderson, T. L., Satheesh, S. K. & Charlson, R. J. Satellite-derived direct radiative effect of aerosols dependent on cloud cover. Nat. Geosci 2, 181–184 (2009).

    Article  CAS  Google Scholar 

  35. Chýlek, P., Grams, G. W., Smith, G. A. & Russell, P. B. Hemispherical backscattering by aerosols. J. Appl. Meteorol. 14, 380–387 (1975).

    Article  Google Scholar 

  36. Jethva, H., Torres, O. & Ahn, C. A 12-year long global record of optical depth of absorbing aerosols above the clouds derived from the OMI/OMACA algorithm. Atmos. Meas. Tech. 11, 5837–5864 (2018).

    Article  CAS  Google Scholar 

  37. Haywood, J. M. & Shine, K. P. Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model. Q. J. R. Meteorol. Soc. 123, 1907–1930 (1997).

    Google Scholar 

  38. Boucher, O. On aerosol direct shortwave forcing and the Henyey–Greenstein phase function. J. Atmos. Sci. 55, 128–134 (1998).

    Article  Google Scholar 

  39. Turton, J. D. & Nicholls, S. A study of the diurnal variation of stratocumulus using a multiple mixed layer model. Q. J. R. Meteorol. Soc. 113, 969–1009 (1987).

    Article  Google Scholar 

  40. Rogers, D. P. & Korac̆in, D. Radiative transfer and turbulence in the cloud-topped marine atmospheric boundary layer. J. Atmos. Sci. 49, 1473–1486 (1992).

    Article  Google Scholar 

  41. Formenti, P. et al. STAAARTE‐MED 1998 summer airborne measurements over the Aegean Sea 2. Aerosol scattering and absorption, and radiative calculations. J. Geophys. Res. https://doi.org/10.1029/2001JD001536 (2002).

  42. Ryoo, J.-M. et al. A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: part 1 – climatology. Atmos. Chem. Phys. 21, 16689–16707 (2021).

    Article  CAS  Google Scholar 

  43. Chang, I. & Christopher, S. A. The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds. Q. J. R. Meteorol. Soc. 143, 1395–1405 (2017).

    Article  Google Scholar 

  44. Thorsen, T. J., Winker, D. M. & Ferrare, R. A. Uncertainty in observational estimates of the aerosol direct radiative effect and forcing. J. Clim. 34, 195–214 (2021).

    Article  Google Scholar 

  45. Dubovik, O. et al. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. 105, 9791–9806 (2000).

    Article  CAS  Google Scholar 

  46. Devi, A. & Satheesh, S. K. Global maps of aerosol single scattering albedo using combined CERES-MODIS retrieval. Atmos. Chem. Phys. 22, 5365–5376 (2022).

    Article  CAS  Google Scholar 

  47. Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D. & Rudich, Y. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl Acad. Sci. USA 102, 11207–11212 (2005).

    Article  CAS  Google Scholar 

  48. Zhang, J. & Zuidema, P. The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic. Atmos. Chem. Phys. 19, 14493–14516 (2019).

    Article  CAS  Google Scholar 

  49. Mallet, M. et al. Climate models generally underrepresent the warming by Central Africa biomass-burning aerosols over the Southeast Atlantic. Sci. Adv. 7, eabg9998 (2021).

    Article  Google Scholar 

  50. Sun, E. et al. Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017. J. Atmos. Sol. Terr. Phys. 186, 8–19 (2019).

    Article  CAS  Google Scholar 

  51. Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article  Google Scholar 

  52. Buchard, V. et al. The MERRA-2 aerosol eeanalysis, 1980 onward. Part II: evaluation and case studies. J. Clim. 30, 6851–6872 (2017).

    Article  CAS  Google Scholar 

  53. Randles, C. A. et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: system description and data assimilation evaluation. J. Climate 30, 6823–6850 (2017).

    Article  CAS  Google Scholar 

  54. Doelling, D., Haney, C., Bhatt, R., Scarino, B. & Gopalan, A. Geostationary visible imager calibration for the CERES SYN1deg edition 4 product. Remote Sensing 10, 288 (2018).

    Article  Google Scholar 

  55. Minnis, P. et al. CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS Data—part I: algorithms. IEEE Trans. Geosci. Remote Sensing 49, 4374–4400 (2011).

    Article  Google Scholar 

  56. Emde, C. et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 9, 1647–1672 (2016).

    Article  Google Scholar 

  57. Mayer, B. & Kylling, A. Technical note: the libRadtran software package for radiative transfer calculations – description and examples of use. Atmos. Chem. Phys. 5, 1855–1877 (2005).

    Article  CAS  Google Scholar 

  58. Fu, Q. & Liou, K. N. On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci. 49, 2139–2156 (1992).

    Article  Google Scholar 

  59. Platnick, S. et al. The MODIS cloud optical and microphysical products: collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sensing 55, 502–525 (2017).

    Article  Google Scholar 

  60. Chang, I. Regional aerosol warming enhanced by the diurnal cycle of low cloud. Zenodo https://doi.org/10.5281/zenodo.15540263 (2025).

Download references

Acknowledgements

This research has been supported by the University of North Carolina at Charlotte start-up package (grant no. 134033) and the University of Oklahoma (OU) start-up package (grant no. 122007900). Part of the computation in this Article was performed at the Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma (OU). D.P. and W.S. acknowledge support from NASA’s Atmospheric Composition Campaign Data Analysis and Modeling and Clouds and the Earth’s Radiant Energy System (CERES) programmes. P.Z. acknowledges support from NASA grant no. 80NSSC21K1344 and DOE ASR grant no. DE-SC002125. The contribution of S.J.D. to this publication is partially funded by the Cooperative Institute for Climate, Ocean, & Ecosystem Studies (CICOES) under NOAA Cooperative Agreement NA20OAR4320271, Contribution No. 2025-1458.

Author information

Authors and Affiliations

Authors

Contributions

I.C. and J.R. conceived the study. I.C., D.P. and Z.Z. developed the methodology. I.C. and L.G. performed the radiative transfer calculations. I.C., L.G., D.P., W.L.S. Jr, E.D.L., J.Z. and Z.Y. analysed the SEVIRI cloud data. A.A.F., P.C. and A.M.d.S. analysed the MERRA-2 data. All authors reviewed and edited the Article.

Corresponding author

Correspondence to Ian Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Monthly mean DARE (in W m−2) at the surface and within the atmosphere
Extended Data Table 2 The representative monthly SSA values at 500 nm for the 20 grid boxes

Extended Data Fig. 1 Monthly mean diurnal cycles of DARESurface.

ac. DARESurface for hourly varying cloud properties with those based on diurnally fixed cloud properties from 1300 UTC throughout the day during 2016–2018 for August (a), September (b), and October (c). The filled circles represent DARE based on hourly varying COD and CF and three-hourly variations of the aerosol optical depth. The dashed lines denote DARE using diurnally fixed cloud and aerosol properties. The monthly mean DARE values are summarized in Extended Data Table 1.

Extended Data Fig. 2 Monthly mean diurnal cycles of DAREATM.

ac. DAREATM for hourly varying cloud properties with those based on diurnally fixed cloud properties from 1300 UTC throughout the day during 2016–2018 for August (a), September (b), and October (c). The filled circles represent DARE based on hourly varying COD and CF and three-hourly variations of the aerosol optical depth. The dashed lines denote DARE using diurnally fixed cloud and aerosol properties. The monthly mean DARE values are summarized in Extended Data Table 1.

Extended Data Fig. 3 The twenty monthly mean aerosol models over the southeast Atlantic.

Each of the twenty numbered grids spans over 10° × 10° with a unique set of aerosol SSA and asymmetry parameter for COD corrections and flux calculations.

Extended Data Fig. 4 Monthly mean differences in DARESurface between hourly varying and diurnally fixed cloud properties.

Same as Fig. 5, but for the surface.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, I., Gao, L., Adebiyi, A.A. et al. Regional aerosol warming enhanced by the diurnal cycle of low cloud. Nat. Geosci. 18, 702–708 (2025). https://doi.org/10.1038/s41561-025-01740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-025-01740-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing