Abstract
Chemical weathering of silicate rocks redistributes major, minor and trace elements through coupled dissolution–precipitation reactions. These weathering processes drive shifts in ocean acid–base chemistry, modulating atmospheric carbon dioxide levels and providing a stabilizing feedback in the carbon cycle. Silicate weathering occurs in both terrestrial and marine environments, releasing (‘forward’) or consuming alkalinity (‘reverse’), but these have largely been perceived as independent and studied in isolation. However, weathering products are transported downstream across terrestrial and to marine environments, suggesting a dynamic coupling of these weathering processes across scales. Here we propose that the Earth’s silicate weathering occurs along a continuum linking mountains to the deepest sedimentary environments and forward to reverse weathering. In this framework, the magnitude and direction of a local weathering flux depends on the materials’ origin, weathering–erosion history and environmental conditions. Consequently, global silicate weathering fluxes and the long-term carbon cycle feedback may be governed by the dynamic interplay of various environments along the silicate weathering continuum.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
Data availability
All data are available as a supplement to the online version of this document or upon request from the corresponding author.
Code availability
All codes are available as a supplement to the online version of this document or upon request from the corresponding author.
References
Ruiz-Agudo, E. et al. Control of silicate weathering by interface-coupled dissolution–precipitation processes at the mineral–solution interface. Geology 44, 567–570 (2016).
Hellmann, R. et al. Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: a study based on the nanometer-scale chemistry of fluid–silicate interfaces. Chem. Geol. 294/295, 203–216 (2012).
Berner, E. K. & Berner, R. A. Global Environment: Water, Air, and Geochemical Cycles (Princeton Univ. Press, 2012).
Jeandel, C. & Oelkers, E. H. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles. Chem. Geol. 395, 50–66 (2015).
Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).
Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).
Kemeny, P. C., Torres, M. A., Fischer, W. W. & Blättler, C. L. Balance and imbalance in biogeochemical cycles reflect the operation of closed, exchange, and open sets. Proc. Natl Acad. Sci. USA 121, e2316535121 (2024).
Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. & West, A. J. Global chemical weathering and associated P-release—the role of lithology, temperature and soil properties. Chem. Geol. 363, 145–163 (2014).
Mayfield, K. K. et al. Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba. Nat. Commun. 12, 148 (2021).
Brantley, S. L., Shaughnessy, A., Lebedeva, M. I. & Balashov, V. N. How temperature-dependent silicate weathering acts as Earth’s geological thermostat. Science 379, 382–389 (2023).
Ibarra, D. E. et al. Differential weathering of basaltic and granitic catchments from concentration–discharge relationships. Geochim. Cosmochim. Acta 190, 265–293 (2016).
Lupker, M. et al. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochim. Cosmochim. Acta 84, 410–432 (2012).
Wallmann, K., Geilert, S. & Scholz, F. Chemical alteration of riverine particles in seawater and marine sediments: effects on seawater composition and atmospheric CO2. Am. J. Sci. 323, 7 (2023).
Aloisi, G., Wallmann, K., Drews, M. & Bohrmann, G. Evidence for the submarine weathering of silicate minerals in Black Sea sediments: possible implications for the marine Li and B cycles. Geochem. Geophys. Geosyst. 5, QO4007 (2004).
Wallmann, K. et al. Silicate weathering in anoxic marine sediments. Geochim. Cosmochim. Acta 72, 3067–3090 (2008).
Michalopoulos, P. & Aller, R. C. Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995).
Aller, R. C. & Wehrmann, L. in Treatise on Geochemistry 3rd end, Vol. 4 (eds Anbar, A. & Weis, D.) 573–629 (2025).
Torres, M. E., Milliken, K. L., Hüpers, A., Kim, J. H. & Lee, S. G. Authigenic clays versus carbonate formation as products of marine silicate weathering in the input sequence to the Sumatra subduction zone. Geochem. Geophys. Geosyst. 23, e2022GC010338 (2022).
Torres, M. E. et al. Silicate weathering in anoxic marine sediment as a requirement for authigenic carbonate burial. Earth Sci. Rev. 200, 102960 (2020).
Aplin, A. C. & Taylor, K. G. in Environmental Mineralogy II (eds Vaughan, D. & Wogelius, R. A.) Vol. 13, 123–175 (Mineralogical Society of Great Britain and Ireland, 2013).
Milliken, K. L. in Treatise on Geochemistry Vol. 7 (eds Holland, H. D. & Turekian, K. K.) 159–190 (Pergamon, 2003).
Müller, G. Diagenesis in argillaceous sediments. Dev. Sedimentol. 8, 127–177 (1967).
Park, Y. et al. Emergence of the Southeast Asian islands as a driver for Neogene cooling. Proc. Natl Acad. Sci. USA 117, 25319–25326 (2020).
Isson, T. T. et al. Evolution of the global carbon cycle and climate regulation on Earth. Glob. Biogeochem. Cycles 34, e2018GB006061 (2020).
Penman, D. E., Caves Rugenstein, J. K., Ibarra, D. E. & Winnick, M. J. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle. Earth Sci. Rev. 209, 103298 (2020).
Mills, B. J. W., Donnadieu, Y. & Goddéris, Y. Spatial continuous integration of Phanerozoic global biogeochemistry and climate. Gondwana Res. 100, 73–86 (2021).
Coogan, L. A. & Gillis, K. M. Low-temperature alteration of the seafloor: impacts on ocean chemistry. Annu. Rev. Earth Planet. Sci. 46, 21–45 (2018).
Luttge, A., Arvidson, R. S., Fischer, C. & Kurganskaya, I. Kinetic concepts for quantitative prediction of fluid–solid interactions. Chem. Geol. 504, 216–235 (2019).
Müller, G., Fritzsche, M. B. K., Dohmen, L. & Geisler, T. Feedbacks and non-linearity of silicate glass alteration in hyperalkaline solution studied by in operando fluid-cell Raman spectroscopy. Geochim. Cosmochim. Acta 329, 1–21 (2022).
Fabre, S., Jeandel, C., Zambardi, T., Roustan, M. & Almar, R. An overlooked silica source of the modern oceans: are sandy beaches the key? Front Earth Sci. 7, 231 (2019).
Meysman, F. J. R. & Montserrat, F. Negative CO2 emissions via enhanced silicate weathering in coastal environments. Biol. Lett. 13, 20160905 (2017).
Caves Rugenstein, J. K., Ibarra, D. E. & von Blanckenburg, F. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature 571, 99–102 (2019).
Mackenzie, F. T. & Garrels, R. M. Chemical mass balance between rivers and oceans. Am. J. Sci. 264, 507–525 (1966).
West, A. J., Galy, A. & Bickle, M. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211–228 (2005).
Thorpe, M. T., Hurowitz, J. A. & Dehouck, E. Sediment geochemistry and mineralogy from a glacial terrain river system in southwest Iceland. Geochim. Cosmochim. Acta 263, 140–166 (2019).
Müller, G., Middelburg, J. J. & Sluijs, A. Introducing GloRiSe—a global database on river sediment composition. Earth Syst. Sci. Data 13, 3565–3575 (2021).
Longman, J. et al. Marine diagenesis of tephra aided the Palaeocene–Eocene Thermal Maximum termination. Earth Planet. Sci. Lett. 571, 117101 (2021).
Beckingham, L. E. et al. Evaluation of accessible mineral surface areas for improved prediction of mineral reaction rates in porous media. Geochim. Cosmochim. Acta 205, 31–49 (2017).
Winnick, M. J. & Maher, K. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback. Earth Planet. Sci. Lett. 485, 111–120 (2018).
Bouchez, J. et al. Floodplains of large rivers: weathering reactors or simple silos? Chem. Geol. 332/333, 166–184 (2012).
Swindale, L. D. & Fan, P. F. Transformation of gibbsite to chlorite in ocean bottom sediments. Science 157, 799–800 (1967).
Journet, E., Balkanski, Y. & Harrison, S. P. A new data set of soil mineralogy for dust-cycle modeling. Atmos. Chem. Phys. 14, 3801–3816 (2014).
Hayes, M. O. Relationships between coastal climate and bottom sediment type on the inner continental shelf. Mar. Geol. 5, 111–132 (1967).
Ku, T. C. W. & Walter, L. M. Syndepositional formation of Fe-rich clays in tropical shelf sediments, San Blas Archipelago, Panama. Chem. Geol. 197, 197–213 (2003).
Rahman, S., Aller, R. C. & Cochran, J. K. The missing silica sink—revisiting the marine sedimentary Si cycle using cosmogenic 32Si. Glob. Biogeochem. Cycles 31, 1559–1578 (2017).
Petzing, J. & Chester, R. Authigenic marine zeolites and their relationship to global volcanism. Mar. Geol. 29, 253–271 (1979).
Berner, R. A. A new geochemical classification of sedimentary environments. J. Sediment. Res. 51, 359–365 (1981).
Aller, R. C., Blair, N. E., Xia, Q. & Rude, P. D. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Cont. Shelf Res. 16, 753–786 (1996).
Bao, R. et al. Influence of hydrodynamic processes on the fate of sedimentary organic matter on continental margins. Glob. Biogeochem. Cycles 32, 1420–1432 (2018).
Scholz, F., Hensen, C., Schmidt, M. & Geersen, J. Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins. Geochim. Cosmochim. Acta 100, 200–216 (2013).
Michalopoulos, P. & Aller, R. C. Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim. Cosmochim. Acta 68, 1061–1085 (2004).
Syvitski, J. P. M., Smith, J. N., Calabrese, E. A. & Boudreau, B. P. Basin sedimentation and the growth of prograding deltas. J. Geophys. Res. 93, 6895–6908 (1988).
Maher, K. & Chamberlain, C. P. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343, 1502–1504 (2014).
Kump, L. R. & Alley, R. B. in Material Fluxes on the Surface of the Earth 46–60 (National Research Council, 1994).
Riech, V. & von Rad, U. Silica diagenesis in the Atlantic Ocean: diagenetic potential and transformations. In Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment (eds Talwani, M. et al.) 315–340 (American Geophysical Union, 1979).
Penman, D. E., Keller, A., D’haenens, S., Kirtland Turner, S. & Hull, P. M. Atlantic deep-sea cherts associated with Eocene hyperthermal events. Paleoceanogr. Paleoclimatol. 34, 287–299 (2019).
Tosca, N. J., Guggenheim, S. & Pufahl, P. K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Bull. Geol. Soc. Am. 128, 511–530 (2016).
Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–474 (2018).
Müller, G., Börker, J., Sluijs, A. & Middelburg, J. J. Detrital carbonate minerals in Earth’s element cycles. Glob. Biogeochem. Cycles 36, e2021GB007231 (2022).
Middelburg, J. J., Soetaert, K. & Hagens, M. Ocean alkalinity, buffering and biogeochemical processes. Rev. Geophys. 58, e2019RG000681 (2020).
Derry, L. A. Carbonate weathering, CO2 redistribution, and Neogene CCD and pCO2 evolution. Earth Planet. Sci. Lett. 597, 117801 (2022).
Boudreau, B. P., Middelburg, J. J. & Luo, Y. The role of calcification in carbonate compensation. Nat. Geosci. 11, 894–900 (2018).
Milliken, K. L. & Land, L. The origin and fate of silt sized carbonate in subsurface miocene oligocene mudstones. Sedimentology 40, 107–124 (1993).
Maffre, P., Swanson-Hysell, N. L. & Goddéris, Y. Limited carbon cycle response to increased sulfide weathering due to oxygen feedback. Geophys. Res. Lett. 48, e2021GL094589 (2021).
Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019).
Bufe, A., Rugenstein, J. K. C. & Hovius, N. CO2 drawdown from weathering is maximized at moderate erosion rates. Science 383, 1075–1080 (2024).
Stolze, L. et al. Climate forcing controls on carbon terrestrial fluxes during shale weathering. Proc. Natl Acad. Sci. USA 121, e2400230121 (2024).
Berner, R. A. & Caldeira, K. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25, 955–956 (1997).
Hazen, R. M. et al. Clay mineral evolution. Am. Mineral. 98, 2007–2029 (2013).
Maliva, R. G., Knoll, A. H. & Simonson, B. M. Secular change in the Precambrian silica cycle: insights from chert petrology. Bull. Geol. Soc. Am. 117, 835–845 (2005).
Krissansen-Totton, J. & Catling, D. C. A coupled carbon–silicon cycle model over Earth history: reverse weathering as a possible explanation of a warm mid-Proterozoic climate. Earth Planet. Sci. Lett. 537, 116181 (2020).
Berner, R. A. Weathering, plants, and the long-term carbon cycle. Geochim. Cosmochim. Acta 56, 3225–3231 (1992).
Ibarra, D. E. et al. Modeling the consequences of land plant evolution on silicate weathering. Am. J. Sci. 319, 1–43 (2019).
Seeley, J. T. & Wordsworth, R. D. Episodic deluges in simulated hothouse climates. Nature 599, 74–79 (2021).
McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).
Kalderon-Asael, B. et al. A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature 595, 394–398 (2021).
Cui, Y. & Kump, L. R. Global warming and the end-Permian extinction event: proxy and modeling perspectives. Earth Sci. Rev. 149, 5–22 (2015).
Kump, L. R. Prolonged Late Permian–Early Triassic hyperthermal: failure of climate regulation? Philos. Trans. R. Soc. A 376, 20170078 (2018).
Isson, T. T. et al. Marine siliceous ecosystem decline led to sustained anomalous Early Triassic warmth. Nat. Commun. 13, 3509 (2022).
Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 1611–1615 (2005).
Pogge von Strandmann, P. A. E. et al. Lithium isotope evidence for enhanced weathering and erosion during the Paleocene–Eocene Thermal Maximum. Sci. Adv. 7, eabh4224 (2021).
Carmichael, M. J. et al. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene–Eocene Thermal Maximum. Glob. Planet. Change 157, 114–138 (2017).
Krause, A. J., Sluijs, A., van der Ploeg, R., Lenton, T. M. & Pogge von Strandmann, P. A. E. Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum. Nat. Geosci. 16, 730–738 (2023).
Banerjee, S., Choudhury, T. R., Saraswati, P. K. & Khanolkar, S. The formation of authigenic deposits during Paleogene warm climatic intervals: a review. J. Palaeogeogr. 9, 27 (2020).
Geilert, S. et al. Coastal El Niño triggers rapid marine silicate alteration on the seafloor. Nat. Commun. 14, 1676 (2023).
Hartmann, J. et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51, 113–149 (2013).
Schuiling, R. D. & Krijgsman, P. Enhanced weathering: an effective and cheap tool to sequester CO2. Clim. Change 74, 349–354 (2006).
Longman, J., Palmer, M. R. & Gernon, T. M. Viability of greenhouse gas removal via artificial addition of volcanic ash to the ocean. Anthropocene 32, 100264 (2020).
Caves, J. K., Jost, A. B., Lau, K. V. & Maher, K. Cenozoic carbon cycle imbalances and a variable weathering feedback. Earth Planet. Sci. Lett. 450, 152–163 (2016).
Dunlea, A. G., Murray, R. W., Santiago Ramos, D. P. & Higgins, J. A. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering. Nat. Commun. 8, 844 (2017).
Acknowledgements
We thank A. Exel and M. Mullen-Pouw (both Utrecht University) for helping with workshop organization, and thank T. Markus (Utrecht University) for his patience and skill while illustrating Earth’s silicate weathering continuum. This work was carried out under the umbrella of the Netherlands Earth System Science Center (NESSC) and supported by an NESSC workshop grant. The project has received funding from the European Union Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement 847504. D.J.C. and A.S. thank the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme for grants 833454 and 771497, respectively. D.J.C. also received a grant from the Knut and Alice Wallenberg Foundation. D.J.J.v.H. acknowledges NWO-Vici grant 865.17.001. J.C.R. received funding from the Colorado State University Warner College Dean’s Transdisciplinary Travel Grant. N.J.P. acknowledges support from NASA ICAR Alternative Earths grant. A.N.-S. received funding from NSF grant numbers EAR-1554502 and EAR-2012730. W.-L.H. acknowledges funding from the European Research Council (ERC) under the Consolidator Grant (Project 101087884—MadSilica), Ragnar Söderbergs stiftelse (project 1/22-A) and STINT (Swedish Foundation for International Cooperation in Research and Higher Education) (project MG2022-9391).
Author information
Authors and Affiliations
Contributions
G.T.-M. organized and conceptualized the workshop resulting in this article with the help of J.J.M., A.S. and S.G. All authors helped in conceptualizing the article and figures. G.T.-M. drafted the Abstract, The silicate weathering continuum, Carbon cycle dynamics and shared forcings, Conclusions and Box 1 with inputs from all authors. G.T.-M., C.J. and J.J.M. wrote the introductory section. S.G., A.S. and G.T.-M. wrote Short timescales with inputs from G.-J.R. J.C.R. and G.T.-M. wrote Box 2 and The rise of land plants. J.L., G.T.-M. and A.S. wrote Eocene global warming events. P.R.D.M. and G.T.-M. wrote The emergence of continents with edits from D.J.J.v.H. N.J.P. and G.T.-M. wrote Permian–Triassic boundary. G.T.-M., K.L.M., J.L., W.-L.H., X.Y.Z., D.J.J.v.H., M.H. and J.J.M. contributed particularly to Understanding, reconstructing and predicting weathering. J.C.R. coded the carbon cycle model with inputs from G.T.-M. and N.J.P. G.T.-M. and J.J.M. edited the manuscript. All authors helped in reviewing and improving the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Shouye Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Fig. 1, Note 1 and Table 1.
Supplementary Data 1
MATLAB scripts for reproducing the data and figure discussed in Box 1.
Supplementary Data 2
R script for the carbon cycle model discussed in Box 2.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Trapp-Müller, G., Caves Rugenstein, J., Conley, D.J. et al. Earth’s silicate weathering continuum. Nat. Geosci. 18, 691–701 (2025). https://doi.org/10.1038/s41561-025-01743-y
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41561-025-01743-y