Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Earth’s silicate weathering continuum

Abstract

Chemical weathering of silicate rocks redistributes major, minor and trace elements through coupled dissolution–precipitation reactions. These weathering processes drive shifts in ocean acid–base chemistry, modulating atmospheric carbon dioxide levels and providing a stabilizing feedback in the carbon cycle. Silicate weathering occurs in both terrestrial and marine environments, releasing (‘forward’) or consuming alkalinity (‘reverse’), but these have largely been perceived as independent and studied in isolation. However, weathering products are transported downstream across terrestrial and to marine environments, suggesting a dynamic coupling of these weathering processes across scales. Here we propose that the Earth’s silicate weathering occurs along a continuum linking mountains to the deepest sedimentary environments and forward to reverse weathering. In this framework, the magnitude and direction of a local weathering flux depends on the materials’ origin, weathering–erosion history and environmental conditions. Consequently, global silicate weathering fluxes and the long-term carbon cycle feedback may be governed by the dynamic interplay of various environments along the silicate weathering continuum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of selected weathering environments and processes along Earth’s weathering continuum.
Fig. 2: Illustration of hypothetical endmember scenarios.

Similar content being viewed by others

Data availability

All data are available as a supplement to the online version of this document or upon request from the corresponding author.

Code availability

All codes are available as a supplement to the online version of this document or upon request from the corresponding author.

References

  1. Ruiz-Agudo, E. et al. Control of silicate weathering by interface-coupled dissolution–precipitation processes at the mineral–solution interface. Geology 44, 567–570 (2016).

    Article  CAS  Google Scholar 

  2. Hellmann, R. et al. Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: a study based on the nanometer-scale chemistry of fluid–silicate interfaces. Chem. Geol. 294/295, 203–216 (2012).

    Article  Google Scholar 

  3. Berner, E. K. & Berner, R. A. Global Environment: Water, Air, and Geochemical Cycles (Princeton Univ. Press, 2012).

  4. Jeandel, C. & Oelkers, E. H. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles. Chem. Geol. 395, 50–66 (2015).

    Article  CAS  Google Scholar 

  5. Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).

    Article  CAS  Google Scholar 

  6. Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).

    Article  CAS  Google Scholar 

  7. Kemeny, P. C., Torres, M. A., Fischer, W. W. & Blättler, C. L. Balance and imbalance in biogeochemical cycles reflect the operation of closed, exchange, and open sets. Proc. Natl Acad. Sci. USA 121, e2316535121 (2024).

    Article  CAS  Google Scholar 

  8. Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. & West, A. J. Global chemical weathering and associated P-release—the role of lithology, temperature and soil properties. Chem. Geol. 363, 145–163 (2014).

    Article  CAS  Google Scholar 

  9. Mayfield, K. K. et al. Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba. Nat. Commun. 12, 148 (2021).

    Article  CAS  Google Scholar 

  10. Brantley, S. L., Shaughnessy, A., Lebedeva, M. I. & Balashov, V. N. How temperature-dependent silicate weathering acts as Earth’s geological thermostat. Science 379, 382–389 (2023).

    Article  CAS  Google Scholar 

  11. Ibarra, D. E. et al. Differential weathering of basaltic and granitic catchments from concentration–discharge relationships. Geochim. Cosmochim. Acta 190, 265–293 (2016).

    Article  CAS  Google Scholar 

  12. Lupker, M. et al. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochim. Cosmochim. Acta 84, 410–432 (2012).

    Article  CAS  Google Scholar 

  13. Wallmann, K., Geilert, S. & Scholz, F. Chemical alteration of riverine particles in seawater and marine sediments: effects on seawater composition and atmospheric CO2. Am. J. Sci. 323, 7 (2023).

    Article  Google Scholar 

  14. Aloisi, G., Wallmann, K., Drews, M. & Bohrmann, G. Evidence for the submarine weathering of silicate minerals in Black Sea sediments: possible implications for the marine Li and B cycles. Geochem. Geophys. Geosyst. 5, QO4007 (2004).

    Article  Google Scholar 

  15. Wallmann, K. et al. Silicate weathering in anoxic marine sediments. Geochim. Cosmochim. Acta 72, 3067–3090 (2008).

    Article  Google Scholar 

  16. Michalopoulos, P. & Aller, R. C. Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995).

    Article  CAS  Google Scholar 

  17. Aller, R. C. & Wehrmann, L. in Treatise on Geochemistry 3rd end, Vol. 4 (eds Anbar, A. & Weis, D.) 573–629 (2025).

  18. Torres, M. E., Milliken, K. L., Hüpers, A., Kim, J. H. & Lee, S. G. Authigenic clays versus carbonate formation as products of marine silicate weathering in the input sequence to the Sumatra subduction zone. Geochem. Geophys. Geosyst. 23, e2022GC010338 (2022).

    Article  CAS  Google Scholar 

  19. Torres, M. E. et al. Silicate weathering in anoxic marine sediment as a requirement for authigenic carbonate burial. Earth Sci. Rev. 200, 102960 (2020).

    Article  CAS  Google Scholar 

  20. Aplin, A. C. & Taylor, K. G. in Environmental Mineralogy II (eds Vaughan, D. & Wogelius, R. A.) Vol. 13, 123–175 (Mineralogical Society of Great Britain and Ireland, 2013).

  21. Milliken, K. L. in Treatise on Geochemistry Vol. 7 (eds Holland, H. D. & Turekian, K. K.) 159–190 (Pergamon, 2003).

  22. Müller, G. Diagenesis in argillaceous sediments. Dev. Sedimentol. 8, 127–177 (1967).

    Article  Google Scholar 

  23. Park, Y. et al. Emergence of the Southeast Asian islands as a driver for Neogene cooling. Proc. Natl Acad. Sci. USA 117, 25319–25326 (2020).

    Article  CAS  Google Scholar 

  24. Isson, T. T. et al. Evolution of the global carbon cycle and climate regulation on Earth. Glob. Biogeochem. Cycles 34, e2018GB006061 (2020).

    Article  CAS  Google Scholar 

  25. Penman, D. E., Caves Rugenstein, J. K., Ibarra, D. E. & Winnick, M. J. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle. Earth Sci. Rev. 209, 103298 (2020).

    Article  CAS  Google Scholar 

  26. Mills, B. J. W., Donnadieu, Y. & Goddéris, Y. Spatial continuous integration of Phanerozoic global biogeochemistry and climate. Gondwana Res. 100, 73–86 (2021).

    Article  CAS  Google Scholar 

  27. Coogan, L. A. & Gillis, K. M. Low-temperature alteration of the seafloor: impacts on ocean chemistry. Annu. Rev. Earth Planet. Sci. 46, 21–45 (2018).

    Article  Google Scholar 

  28. Luttge, A., Arvidson, R. S., Fischer, C. & Kurganskaya, I. Kinetic concepts for quantitative prediction of fluid–solid interactions. Chem. Geol. 504, 216–235 (2019).

    Article  CAS  Google Scholar 

  29. Müller, G., Fritzsche, M. B. K., Dohmen, L. & Geisler, T. Feedbacks and non-linearity of silicate glass alteration in hyperalkaline solution studied by in operando fluid-cell Raman spectroscopy. Geochim. Cosmochim. Acta 329, 1–21 (2022).

    Article  Google Scholar 

  30. Fabre, S., Jeandel, C., Zambardi, T., Roustan, M. & Almar, R. An overlooked silica source of the modern oceans: are sandy beaches the key? Front Earth Sci. 7, 231 (2019).

    Article  Google Scholar 

  31. Meysman, F. J. R. & Montserrat, F. Negative CO2 emissions via enhanced silicate weathering in coastal environments. Biol. Lett. 13, 20160905 (2017).

    Article  Google Scholar 

  32. Caves Rugenstein, J. K., Ibarra, D. E. & von Blanckenburg, F. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature 571, 99–102 (2019).

    Article  CAS  Google Scholar 

  33. Mackenzie, F. T. & Garrels, R. M. Chemical mass balance between rivers and oceans. Am. J. Sci. 264, 507–525 (1966).

    Article  CAS  Google Scholar 

  34. West, A. J., Galy, A. & Bickle, M. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211–228 (2005).

    Article  CAS  Google Scholar 

  35. Thorpe, M. T., Hurowitz, J. A. & Dehouck, E. Sediment geochemistry and mineralogy from a glacial terrain river system in southwest Iceland. Geochim. Cosmochim. Acta 263, 140–166 (2019).

    Article  CAS  Google Scholar 

  36. Müller, G., Middelburg, J. J. & Sluijs, A. Introducing GloRiSe—a global database on river sediment composition. Earth Syst. Sci. Data 13, 3565–3575 (2021).

    Article  Google Scholar 

  37. Longman, J. et al. Marine diagenesis of tephra aided the Palaeocene–Eocene Thermal Maximum termination. Earth Planet. Sci. Lett. 571, 117101 (2021).

    Article  CAS  Google Scholar 

  38. Beckingham, L. E. et al. Evaluation of accessible mineral surface areas for improved prediction of mineral reaction rates in porous media. Geochim. Cosmochim. Acta 205, 31–49 (2017).

    Article  CAS  Google Scholar 

  39. Winnick, M. J. & Maher, K. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback. Earth Planet. Sci. Lett. 485, 111–120 (2018).

    Article  CAS  Google Scholar 

  40. Bouchez, J. et al. Floodplains of large rivers: weathering reactors or simple silos? Chem. Geol. 332/333, 166–184 (2012).

    Article  Google Scholar 

  41. Swindale, L. D. & Fan, P. F. Transformation of gibbsite to chlorite in ocean bottom sediments. Science 157, 799–800 (1967).

    Article  CAS  Google Scholar 

  42. Journet, E., Balkanski, Y. & Harrison, S. P. A new data set of soil mineralogy for dust-cycle modeling. Atmos. Chem. Phys. 14, 3801–3816 (2014).

    Article  Google Scholar 

  43. Hayes, M. O. Relationships between coastal climate and bottom sediment type on the inner continental shelf. Mar. Geol. 5, 111–132 (1967).

    Article  Google Scholar 

  44. Ku, T. C. W. & Walter, L. M. Syndepositional formation of Fe-rich clays in tropical shelf sediments, San Blas Archipelago, Panama. Chem. Geol. 197, 197–213 (2003).

    Article  CAS  Google Scholar 

  45. Rahman, S., Aller, R. C. & Cochran, J. K. The missing silica sink—revisiting the marine sedimentary Si cycle using cosmogenic 32Si. Glob. Biogeochem. Cycles 31, 1559–1578 (2017).

    Article  CAS  Google Scholar 

  46. Petzing, J. & Chester, R. Authigenic marine zeolites and their relationship to global volcanism. Mar. Geol. 29, 253–271 (1979).

    Article  CAS  Google Scholar 

  47. Berner, R. A. A new geochemical classification of sedimentary environments. J. Sediment. Res. 51, 359–365 (1981).

    CAS  Google Scholar 

  48. Aller, R. C., Blair, N. E., Xia, Q. & Rude, P. D. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Cont. Shelf Res. 16, 753–786 (1996).

    Article  Google Scholar 

  49. Bao, R. et al. Influence of hydrodynamic processes on the fate of sedimentary organic matter on continental margins. Glob. Biogeochem. Cycles 32, 1420–1432 (2018).

    Article  CAS  Google Scholar 

  50. Scholz, F., Hensen, C., Schmidt, M. & Geersen, J. Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins. Geochim. Cosmochim. Acta 100, 200–216 (2013).

    Article  CAS  Google Scholar 

  51. Michalopoulos, P. & Aller, R. C. Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim. Cosmochim. Acta 68, 1061–1085 (2004).

    Article  CAS  Google Scholar 

  52. Syvitski, J. P. M., Smith, J. N., Calabrese, E. A. & Boudreau, B. P. Basin sedimentation and the growth of prograding deltas. J. Geophys. Res. 93, 6895–6908 (1988).

    Article  Google Scholar 

  53. Maher, K. & Chamberlain, C. P. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343, 1502–1504 (2014).

    Article  CAS  Google Scholar 

  54. Kump, L. R. & Alley, R. B. in Material Fluxes on the Surface of the Earth 46–60 (National Research Council, 1994).

  55. Riech, V. & von Rad, U. Silica diagenesis in the Atlantic Ocean: diagenetic potential and transformations. In Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment (eds Talwani, M. et al.) 315–340 (American Geophysical Union, 1979).

  56. Penman, D. E., Keller, A., D’haenens, S., Kirtland Turner, S. & Hull, P. M. Atlantic deep-sea cherts associated with Eocene hyperthermal events. Paleoceanogr. Paleoclimatol. 34, 287–299 (2019).

    Article  Google Scholar 

  57. Tosca, N. J., Guggenheim, S. & Pufahl, P. K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Bull. Geol. Soc. Am. 128, 511–530 (2016).

    Article  CAS  Google Scholar 

  58. Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–474 (2018).

    Article  CAS  Google Scholar 

  59. Müller, G., Börker, J., Sluijs, A. & Middelburg, J. J. Detrital carbonate minerals in Earth’s element cycles. Glob. Biogeochem. Cycles 36, e2021GB007231 (2022).

    Article  Google Scholar 

  60. Middelburg, J. J., Soetaert, K. & Hagens, M. Ocean alkalinity, buffering and biogeochemical processes. Rev. Geophys. 58, e2019RG000681 (2020).

    Article  Google Scholar 

  61. Derry, L. A. Carbonate weathering, CO2 redistribution, and Neogene CCD and pCO2 evolution. Earth Planet. Sci. Lett. 597, 117801 (2022).

    Article  CAS  Google Scholar 

  62. Boudreau, B. P., Middelburg, J. J. & Luo, Y. The role of calcification in carbonate compensation. Nat. Geosci. 11, 894–900 (2018).

    Article  CAS  Google Scholar 

  63. Milliken, K. L. & Land, L. The origin and fate of silt sized carbonate in subsurface miocene oligocene mudstones. Sedimentology 40, 107–124 (1993).

    Article  CAS  Google Scholar 

  64. Maffre, P., Swanson-Hysell, N. L. & Goddéris, Y. Limited carbon cycle response to increased sulfide weathering due to oxygen feedback. Geophys. Res. Lett. 48, e2021GL094589 (2021).

    Article  CAS  Google Scholar 

  65. Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019).

    Article  CAS  Google Scholar 

  66. Bufe, A., Rugenstein, J. K. C. & Hovius, N. CO2 drawdown from weathering is maximized at moderate erosion rates. Science 383, 1075–1080 (2024).

    Article  CAS  Google Scholar 

  67. Stolze, L. et al. Climate forcing controls on carbon terrestrial fluxes during shale weathering. Proc. Natl Acad. Sci. USA 121, e2400230121 (2024).

    Article  CAS  Google Scholar 

  68. Berner, R. A. & Caldeira, K. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25, 955–956 (1997).

    Article  Google Scholar 

  69. Hazen, R. M. et al. Clay mineral evolution. Am. Mineral. 98, 2007–2029 (2013).

    Article  CAS  Google Scholar 

  70. Maliva, R. G., Knoll, A. H. & Simonson, B. M. Secular change in the Precambrian silica cycle: insights from chert petrology. Bull. Geol. Soc. Am. 117, 835–845 (2005).

    Article  Google Scholar 

  71. Krissansen-Totton, J. & Catling, D. C. A coupled carbon–silicon cycle model over Earth history: reverse weathering as a possible explanation of a warm mid-Proterozoic climate. Earth Planet. Sci. Lett. 537, 116181 (2020).

    Article  CAS  Google Scholar 

  72. Berner, R. A. Weathering, plants, and the long-term carbon cycle. Geochim. Cosmochim. Acta 56, 3225–3231 (1992).

    Article  CAS  Google Scholar 

  73. Ibarra, D. E. et al. Modeling the consequences of land plant evolution on silicate weathering. Am. J. Sci. 319, 1–43 (2019).

    Article  CAS  Google Scholar 

  74. Seeley, J. T. & Wordsworth, R. D. Episodic deluges in simulated hothouse climates. Nature 599, 74–79 (2021).

    Article  CAS  Google Scholar 

  75. McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).

    Article  CAS  Google Scholar 

  76. Kalderon-Asael, B. et al. A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature 595, 394–398 (2021).

    Article  CAS  Google Scholar 

  77. Cui, Y. & Kump, L. R. Global warming and the end-Permian extinction event: proxy and modeling perspectives. Earth Sci. Rev. 149, 5–22 (2015).

    Article  CAS  Google Scholar 

  78. Kump, L. R. Prolonged Late Permian–Early Triassic hyperthermal: failure of climate regulation? Philos. Trans. R. Soc. A 376, 20170078 (2018).

    Article  Google Scholar 

  79. Isson, T. T. et al. Marine siliceous ecosystem decline led to sustained anomalous Early Triassic warmth. Nat. Commun. 13, 3509 (2022).

    Article  CAS  Google Scholar 

  80. Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 1611–1615 (2005).

    Article  CAS  Google Scholar 

  81. Pogge von Strandmann, P. A. E. et al. Lithium isotope evidence for enhanced weathering and erosion during the Paleocene–Eocene Thermal Maximum. Sci. Adv. 7, eabh4224 (2021).

    Article  CAS  Google Scholar 

  82. Carmichael, M. J. et al. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene–Eocene Thermal Maximum. Glob. Planet. Change 157, 114–138 (2017).

    Article  Google Scholar 

  83. Krause, A. J., Sluijs, A., van der Ploeg, R., Lenton, T. M. & Pogge von Strandmann, P. A. E. Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum. Nat. Geosci. 16, 730–738 (2023).

    Article  CAS  Google Scholar 

  84. Banerjee, S., Choudhury, T. R., Saraswati, P. K. & Khanolkar, S. The formation of authigenic deposits during Paleogene warm climatic intervals: a review. J. Palaeogeogr. 9, 27 (2020).

    Article  CAS  Google Scholar 

  85. Geilert, S. et al. Coastal El Niño triggers rapid marine silicate alteration on the seafloor. Nat. Commun. 14, 1676 (2023).

    Article  CAS  Google Scholar 

  86. Hartmann, J. et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51, 113–149 (2013).

    Article  Google Scholar 

  87. Schuiling, R. D. & Krijgsman, P. Enhanced weathering: an effective and cheap tool to sequester CO2. Clim. Change 74, 349–354 (2006).

    Article  CAS  Google Scholar 

  88. Longman, J., Palmer, M. R. & Gernon, T. M. Viability of greenhouse gas removal via artificial addition of volcanic ash to the ocean. Anthropocene 32, 100264 (2020).

    Article  Google Scholar 

  89. Caves, J. K., Jost, A. B., Lau, K. V. & Maher, K. Cenozoic carbon cycle imbalances and a variable weathering feedback. Earth Planet. Sci. Lett. 450, 152–163 (2016).

    Article  CAS  Google Scholar 

  90. Dunlea, A. G., Murray, R. W., Santiago Ramos, D. P. & Higgins, J. A. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering. Nat. Commun. 8, 844 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Exel and M. Mullen-Pouw (both Utrecht University) for helping with workshop organization, and thank T. Markus (Utrecht University) for his patience and skill while illustrating Earth’s silicate weathering continuum. This work was carried out under the umbrella of the Netherlands Earth System Science Center (NESSC) and supported by an NESSC workshop grant. The project has received funding from the European Union Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement 847504. D.J.C. and A.S. thank the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme for grants 833454 and 771497, respectively. D.J.C. also received a grant from the Knut and Alice Wallenberg Foundation. D.J.J.v.H. acknowledges NWO-Vici grant 865.17.001. J.C.R. received funding from the Colorado State University Warner College Dean’s Transdisciplinary Travel Grant. N.J.P. acknowledges support from NASA ICAR Alternative Earths grant. A.N.-S. received funding from NSF grant numbers EAR-1554502 and EAR-2012730. W.-L.H. acknowledges funding from the European Research Council (ERC) under the Consolidator Grant (Project 101087884—MadSilica), Ragnar Söderbergs stiftelse (project 1/22-A) and STINT (Swedish Foundation for International Cooperation in Research and Higher Education) (project MG2022-9391).

Author information

Authors and Affiliations

Authors

Contributions

G.T.-M. organized and conceptualized the workshop resulting in this article with the help of J.J.M., A.S. and S.G. All authors helped in conceptualizing the article and figures. G.T.-M. drafted the Abstract, The silicate weathering continuum, Carbon cycle dynamics and shared forcings, Conclusions and Box 1 with inputs from all authors. G.T.-M., C.J. and J.J.M. wrote the introductory section. S.G., A.S. and G.T.-M. wrote Short timescales with inputs from G.-J.R. J.C.R. and G.T.-M. wrote Box 2 and The rise of land plants. J.L., G.T.-M. and A.S. wrote Eocene global warming events. P.R.D.M. and G.T.-M. wrote The emergence of continents with edits from D.J.J.v.H. N.J.P. and G.T.-M. wrote Permian–Triassic boundary. G.T.-M., K.L.M., J.L., W.-L.H., X.Y.Z., D.J.J.v.H., M.H. and J.J.M. contributed particularly to Understanding, reconstructing and predicting weathering. J.C.R. coded the carbon cycle model with inputs from G.T.-M. and N.J.P. G.T.-M. and J.J.M. edited the manuscript. All authors helped in reviewing and improving the manuscript.

Corresponding author

Correspondence to Gerrit Trapp-Müller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Shouye Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Note 1 and Table 1.

Supplementary Data 1

MATLAB scripts for reproducing the data and figure discussed in Box 1.

Supplementary Data 2

R script for the carbon cycle model discussed in Box 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trapp-Müller, G., Caves Rugenstein, J., Conley, D.J. et al. Earth’s silicate weathering continuum. Nat. Geosci. 18, 691–701 (2025). https://doi.org/10.1038/s41561-025-01743-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-025-01743-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing