Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sea-level rise at the end of the last deglaciation dominated by North American ice sheets

Abstract

The rapid transformation of the ocean–atmosphere–cryosphere system during the last deglaciation holds clues that may be useful to understand climate change during this century and beyond. Within this context, sea-level change connects the climate system components, but the limited temporal resolution and spatial distribution of relative sea-level records has hindered progress towards closing the ice sheet–sea-level budget since the Last Glacial Maximum. Here we present a relative sea-level record, compiled using radiocarbon-dated basal peat, from the Mississippi Delta stretching back to ~10,000 years ago and combine it with the best available relative sea-level data worldwide for the final episode of the last deglaciation (9,000–7,000 years ago). Geophysical modelling shows that these precise data constraints favour approximately 14 m of ice melt in North America through this interval, 4–10 m greater than previously estimated, and at least three times greater than the Antarctic contribution. Our results call for a major revision of the deglacial ice history with implications for, among others, collapse of the saddle connecting two ice domes over Hudson Bay, the associated abrupt cooling ~8,200 years ago and the sensitivity of the Atlantic Meridional Overturning Circulation to freshwater forcing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mississippi Delta early Holocene RSL record.
Fig. 2: Comparison of early Holocene RSL records.
Fig. 3: Comparison of observed and modelled rates of RSL change between 9 and 7 ka.
Fig. 4: North American and Antarctic contributions to global sea-level rise and FWF to the North Atlantic Ocean during the final stages of the last deglaciation.

Similar content being viewed by others

Data availability

All the RSL data used in the analysis are available via Research Square at https://doi.org/10.21203/rs.3.rs-4138402/v1 and in the Supplementary Data 1. The T2012, NAIS-X and NAISset-E ice models are available via Zenodo at https://doi.org/10.5281/zenodo.15800380 (ref. 97). The AIS ice models are available via Zenodo at https://doi.org/10.5281/zenodo.15811405 (ref. 98).

References

  1. Hibbert, F. D. et al. Coral indicators of past sea-level change: a global repository of U-series dated benchmarks. Quat. Sci. Rev. 145, 1–56 (2016).

    Article  Google Scholar 

  2. Andrews, J. T. A case of missing water. Nature 358, 281 (1992).

    Article  Google Scholar 

  3. Clark, P. U. & Tarasov, L. Closing the sea level budget at the Last Glacial Maximum. Proc. Natl Acad. Sci. USA 111, 15861–15862 (2014).

    Article  CAS  Google Scholar 

  4. Gowan, E. J. et al. A new global ice sheet reconstruction for the past 80 000 years. Nat. Commun. 12, 1199 (2021).

    Article  CAS  Google Scholar 

  5. Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

    Article  Google Scholar 

  6. Morrill, C. et al. Model sensitivity to North Atlantic freshwater forcing at 8.2 ka. Clim. Past. 9, 955–968 (2013).

    Article  Google Scholar 

  7. He, F. & Clark, P. U. Freshwater forcing of the Atlantic Meridional Overturning Circulation revisited. Nat. Clim. Change 12, 449–454 (2022).

    Article  Google Scholar 

  8. Carlson, A. E. & Clark, P. U. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. 50, RG4007 (2012).

    Article  Google Scholar 

  9. Stroeven, A. P. et al. Deglaciation of Fennoscandia. Quat. Sci. Rev. 147, 91–121 (2016).

    Article  Google Scholar 

  10. Dalton, A. S. et al. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quat. Sci. Rev. 234, 106223 (2020).

    Article  Google Scholar 

  11. Jones, R. S. et al. Stability of the Antarctic Ice Sheet during the pre-industrial Holocene. Nat. Rev. Earth Environ. 3, 500–515 (2022).

    Article  Google Scholar 

  12. Lambeck, K. et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    Article  CAS  Google Scholar 

  13. Roy, K. & Peltier, W. R. Relative sea level in the western Mediterranean basin: a regional test of the ICE-7G_NA (VM7) model and a constraint on late Holocene Antarctic deglaciation. Quat. Sci. Rev. 183, 76–87 (2018).

    Article  Google Scholar 

  14. Smith, D. E. et al. The early Holocene sea level rise. Quat. Sci. Rev. 30, 1846–1860 (2011).

    Article  Google Scholar 

  15. Törnqvist, T. E. & Hijma, M. P. Links between early Holocene ice-sheet decay, sea-level rise and abrupt climate change. Nat. Geosci. 5, 601–606 (2012).

    Article  Google Scholar 

  16. Khan, N. S. Ancient peat reveals that sea level surged rapidly twice at the end of the last ice age. Nature 639, 580–582 (2025).

    Article  CAS  Google Scholar 

  17. Törnqvist, T. E. et al. Deciphering Holocene sea-level history on the US Gulf Coast: a high-resolution record from the Mississippi Delta. Geol. Soc. Am. Bull. 116, 1026–1039 (2004).

    Article  Google Scholar 

  18. Vetter, L. et al. Short organic carbon turnover time and narrow 14C age spectra in early Holocene wetland paleosols. Geochem. Geophys. Geosyst. 18, 142–155 (2017).

    Article  CAS  Google Scholar 

  19. Li, Y.-X. et al. Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200 years ago. Earth Planet. Sci. Lett. 315–316, 41–50 (2012).

    Article  Google Scholar 

  20. Simms, A. R. et al. Sea-level history of the Gulf of Mexico since the Last Glacial Maximum with implications for the melting history of the Laurentide Ice Sheet. Quat. Sci. Rev. 26, 920–940 (2007).

    Article  Google Scholar 

  21. Tjallingii, R. et al. Rapid flooding of the southern Vietnam shelf during the early to mid-Holocene. J. Quat. Sci. 29, 581–588 (2014).

    Article  Google Scholar 

  22. Rush, G. et al. The magnitude and source of meltwater forcing of the 8.2 ka climate event constrained by relative sea-level data from eastern Scotland. Quat. Sci. Adv. 12, 100119 (2023).

    Article  Google Scholar 

  23. Hijma, M. P. et al. Global sea-level rise in the early Holocene revealed from North Sea peats. Nature 639, 652–657 (2025).

    Article  CAS  Google Scholar 

  24. Tarasov, L. et al. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett. 315–316, 30–40 (2012).

    Article  Google Scholar 

  25. Lecavalier, B. S. & Tarasov, L. A. history-matching analysis of the Antarctic Ice Sheet since the last interglacial – Part 1: Ice sheet evolution. Cryosphere 19, 919–953 (2025).

    Article  Google Scholar 

  26. Spector, P. et al. Rapid early-Holocene deglaciation in the Ross Sea, Antarctica. Geophys. Res. Lett. 44, 7817–7825 (2017).

    Article  Google Scholar 

  27. Venturelli, R. A. et al. Constraints on the timing and extent of deglacial grounding line retreat in West Antarctica. AGU Adv. 4, e2022AV000846 (2023).

    Article  Google Scholar 

  28. Albrecht, T. et al. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis. Cryosphere 14, 633–656 (2020).

    Article  Google Scholar 

  29. Peltier, W. R., Argus, D. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    Article  Google Scholar 

  30. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  CAS  Google Scholar 

  31. Marshall, S. J. et al. Glaciological reconstruction of the Laurentide Ice Sheet: physical processes and modelling challenges. Can. J. Earth Sci. 37, 769–793 (2000).

    Article  Google Scholar 

  32. Charbit, S. et al. Numerical reconstructions of the Northern Hemisphere ice sheets through the last glacial–interglacial cycle. Clim. Past. 3, 15–37 (2007).

    Article  Google Scholar 

  33. Licciardi, J. M. et al. Deglaciation of a soft-bedded Laurentide Ice Sheet. Quat. Sci. Rev. 17, 427–448 (1998).

    Article  Google Scholar 

  34. Barber, D. C. et al. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–348 (1999).

    Article  CAS  Google Scholar 

  35. Lawrence, T. et al. Relative sea-level data from southwest Scotland constrain meltwater-driven sea-level jumps prior to the 8.2 kyr BP event. Quat. Sci. Rev. 151, 292–308 (2016).

    Article  Google Scholar 

  36. Wiersma, A. et al. Evaluation of different freshwater forcing scenarios for the 8.2 ka BP event in a coupled climate model. Clim. Dyn. 27, 831–849 (2006).

    Article  Google Scholar 

  37. Wagner, A. J. et al. Model support for forcing of the 8.2 ka event by meltwater from the Hudson Bay ice dome. Clim. Dyn. 41, 2855–2873 (2013).

    Article  Google Scholar 

  38. Matero, I. et al. The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth Planet. Sci. Lett. 473, 205–214 (2017).

    Article  Google Scholar 

  39. Gregoire, L. J., Payne, A. J. & Valdes, P. J. Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature 487, 219–222 (2012).

    Article  CAS  Google Scholar 

  40. Hijma, M. P. & Cohen, K. M. Holocene sea-level database for the Rhine–Meuse Delta, the Netherlands: implications for the pre-8.2 ka sea-level jump. Quat. Sci. Rev. 214, 68–86 (2019).

    Article  Google Scholar 

  41. Lochte, A. A. et al. Labrador Sea freshening at 8.5 ka BP caused by Hudson Bay ice saddle collapse. Nat. Commun. 10, 586 (2019).

    Article  CAS  Google Scholar 

  42. Carlson, A. et al. Routing of western Canadian plains runoff during the 8.2 ka cold event. Geophys. Res. Lett. 36, L14704 (2009).

    Article  Google Scholar 

  43. Ullman, D. J. et al. Final Laurentide Ice-Sheet deglaciation and Holocene climate-sea level change. Quat. Sci. Rev. 152, 49–59 (2016).

    Article  Google Scholar 

  44. Clark, P. U., Alley, R. B. & Pollard, D. Northern Hemisphere ice-sheet influences on global climate change. Science 286, 1104–1111 (1999).

    Article  CAS  Google Scholar 

  45. Caesar, L. et al. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).

    Article  CAS  Google Scholar 

  46. Ditlevsen, P. & Ditlevsen, S. Warning of a forthcoming collapse of the Atlantic Meridional Overturning Circulation. Nat. Commun. 14, 4254 (2023).

    Article  CAS  Google Scholar 

  47. Van Westen, R. M. et al. Physics-based early warning signal shows that AMOC is on tipping course. Sci. Adv. 10, eadk1189 (2024).

    Article  Google Scholar 

  48. Yang, Q. et al. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun. 7, 10525 (2016).

    Article  CAS  Google Scholar 

  49. Aguiar, W. et al. Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting. Sci. Rep. 11, 5473 (2021).

    Article  CAS  Google Scholar 

  50. Pan, L. et al. The influence of lateral Earth structure on inferences of global ice volume during the Last Glacial Maximum. Quat. Sci. Rev. 290, 107644 (2022).

    Article  Google Scholar 

  51. Zong, Y. Mid-Holocene sea-level highstand along the southeast coast of China. Quat. Int. 117, 55–67 (2004).

    Article  Google Scholar 

  52. Wang, Z. et al. Early to mid-Holocene rapid sea-level rise and coastal response on the southern Yangtze Delta plain, China. J. Quat. Sci. 28, 659–672 (2013).

    Article  Google Scholar 

  53. Zhao, Y. The Early to Mid-Holocene Sea-Level Reconstruction and Sedimentary Environmental Response on the Hang-Jia-Hu Plain. PhD thesis, East China Normal Univ. (2015).

  54. Wang, Z. et al. Middle Holocene marine flooding and human response in the south Yangtze coastal plain, East China. Quat. Sci. Rev. 187, 80–93 (2018).

    Article  Google Scholar 

  55. Van de Plassche, O. Sea-level change and water-level movements in the Netherlands during the Holocene. Meded. Rijks Geol. Dienst 36, 1–93 (1982).

    Google Scholar 

  56. Van de Plassche, O. Evolution of the intra-coastal tidal range in the Rhine–Meuse Delta and Flevo Lagoon, 5700–3000 yrs cal BC. Mar. Geol. 124, 113–128 (1995).

    Article  Google Scholar 

  57. Berendsen, H. J. A. et al. New groundwater-level rise data from the Rhine–Meuse Delta—implications for the reconstruction of Holocene relative mean sea-level rise and differential land-level movements. Neth. J. Geosci. 86, 333–354 (2007).

    Google Scholar 

  58. Hijma, M. P. & Cohen, K. M. Timing and magnitude of the sea-level jump preluding the 8200 yr event. Geology 38, 275–278 (2010).

    Article  Google Scholar 

  59. van de Plassche, O., Makaske, B., Hoek, W. Z., Konert, M. & van der Plicht, J. Mid-Holocene water-level changes in the lower Rhine–Meuse Delta (western Netherlands): implications for the reconstruction of relative mean sea-level rise, palaeoriver-gradients and coastal evolution. Neth. J. Geosci. 89, 3–20 (2010).

    Google Scholar 

  60. Vos, P. C. Geologisch en paleolandschappelijk onderzoek Yangtzehaven (Maasvlakte, Rotterdam). Deltares report 1206788-000-BGS-000187 (2013).

  61. Vos, P. C. & Cohen, K. M. Landscape genesis and palaeogeography. in Interdisciplinary Archaeological Research Programme Maasvlakte 2 vol. 566 (eds Moree, J. M. & Sier, M. M.) 63–146 (BOOR Rotterdam, 2014).

  62. Vos, P. C., Bunnik, F. P., Cohen, K. M. & Cremer, H. A staged geogenetic approach to underwater archaeological prospection in the Port of Rotterdam (Yangtzehaven, Maasvlakte, the Netherlands): a geological and palaeoenvironmental case study for local mapping of Mesolithic lowland landscapes. Quat. Int. 367, 4–31 (2015).

    Article  Google Scholar 

  63. Geyh, M., Streif, H. & Kudrass, H.-R. Sea-level changes during the late Pleistocene and Holocene in the Strait of Malacca. Nature 278, 441–443 (1979).

    Article  Google Scholar 

  64. Chua, S. et al. A new Holocene sea-level record for Singapore. Holocene 31, 1376–1390 (2021).

    Article  Google Scholar 

  65. Chmura, G. L., Aharon, P., Socki, R. A. & Abernethy, R. An inventory of 13C abundances in coastal wetlands of Louisiana, USA: vegetation and sediments. Oecologia 74, 264–271 (1987).

    Article  CAS  Google Scholar 

  66. Shennan, I., Long, A. J. & Horton, B. P. (eds) Handbook of Sea-Level Research (John Wiley, 2015).

  67. Hijma, M. P. et al. in Handbook of Sea-Level Research (eds Shennan, I. et al.) 536–553 (John Wiley, 2015).

  68. Steinmetz, B. Assessing Mississippi Delta Marsh Stability Through a Paleoenvironmental Analysis Using Foraminiferal Assemblages. Honors thesis, Tulane Univ. (2015).

  69. Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).

    Article  CAS  Google Scholar 

  70. Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article  CAS  Google Scholar 

  71. Hill, D., Griffiths, S., Peltier, W., Horton, B. & Törnqvist, T. High-resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene. J. Geophys. Res. 116, C10014 (2011).

    Article  Google Scholar 

  72. Keogh, M. E., Törnqvist, T. E., Kolker, A. S., Erkens, G. & Bridgeman, J. G. Organic matter accretion, shallow subsidence, and river delta sustainability. J. Geophys. Res. Earth Surf. 126, e2021JF006231 (2021).

    Article  Google Scholar 

  73. Yu, S.-Y., Törnqvist, T. E. & Hu, P. Quantifying Holocene lithospheric subsidence rates underneath the Mississippi Delta. Earth Planet. Sci. Lett. 331–332, 21–30 (2012).

    Article  Google Scholar 

  74. Wolstencroft, M., Shen, Z., Törnqvist, T. E., Milne, G. A. & Kulp, M. Understanding subsidence in the Mississippi Delta region due to sediment, ice, and ocean loading: insights from geophysical modeling. J. Geophys. Res. Solid Earth 119, 3838–3856 (2014).

    Article  Google Scholar 

  75. Khan, N. S. et al. Inception of a global atlas of sea levels since the Last Glacial Maximum. Quat. Sci. Rev. 220, 359–371 (2019).

    Article  Google Scholar 

  76. Stuiver, M. & Polach, H. A. Reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  77. Törnqvist, T. E., Rosenheim, B. E., Hu, P. & Fernandez, A. B. in Handbook of Sea-Level Research (eds Shennan, I. et al.) 349–360 (John Wiley, 2015).

  78. Van der Molen, J. & De Swart, H. E. Holocene tidal conditions and tide-induced sand transport in the southern North Sea. J. Geophys. Res. 106, 9339–9362 (2001).

    Article  Google Scholar 

  79. Uehara, K. et al. Tidal evolution of the northwest European shelf seas from the Last Glacial Maximum to the present. J. Geophys. Res. 111, C09025 (2006).

    Google Scholar 

  80. Uehara, K., Saito, Y. & Hori, K. Paleotidal regime in the Changjiang (Yangtze) Estuary, the East China Sea, and the Yellow Sea at 6 ka and 10 ka estimated from a numerical model. Mar. Geol. 183, 179–192 (2002).

    Article  Google Scholar 

  81. Cahill, N. et al. Modeling sea-level change using errors-in-variables integrated Gaussian processes. Ann. Appl. Stat. 9, 547–571 (2015).

    Article  Google Scholar 

  82. Cahill, N. et al. A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change. Clim. Past. 12, 525–542 (2016).

    Article  Google Scholar 

  83. Kendall, R. A., Mitrovica, J. X. & Milne, G. A. On post-glacial sea level – II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161, 679–706 (2005).

    Article  Google Scholar 

  84. Farrell, W. & Clark, J. A. On postglacial sea level. Geophys. J. R. Astron. Soc. 46, 647–667 (1976).

    Article  Google Scholar 

  85. Mitrovica, J. X. & Milne, G. A. On post-glacial sea level: I. General theory. Geophys. J. Int. 154, 253–267 (2003).

    Article  Google Scholar 

  86. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  87. Bassett, S. E. et al. Ice sheet and solid Earth influences on far-field sea-level histories. Science 309, 925–928 (2005).

    Article  CAS  Google Scholar 

  88. Milne, G. A. & Mitrovica, J. X. Searching for eustasy in deglacial sea-level histories. Quat. Sci. Rev. 27, 2292–2302 (2008).

    Article  Google Scholar 

  89. Stocchi, P. & Spada, G. Influence of glacial isostatic adjustment upon current sea level variations in the Mediterranean. Tectonophysics 474, 56–68 (2009).

    Article  Google Scholar 

  90. Whitehouse, P. L. et al. A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophys. J. Int. 190, 1464–1482 (2012).

    Article  Google Scholar 

  91. Afonso, J. C. et al. A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets. Geophys. J. Int. 217, 1602–1628 (2019).

    Article  Google Scholar 

  92. Yousefi, M., Milne, G. A. & Latychev, K. Glacial isostatic adjustment of the Pacific Coast of North America: the influence of lateral Earth structure. Geophys. J. Int. 226, 91–113 (2021).

    Article  Google Scholar 

  93. Latychev, K. et al. Glacial isostatic adjustment on 3-D Earth models: a finite-volume formulation. Geophys. J. Int. 161, 421–444 (2005).

    Article  Google Scholar 

  94. Ritsema, J. et al. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

  95. Auer, L. et al. Savani: a variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets. J. Geophys. Res. Solid Earth 119, 3006–3034 (2014).

    Article  Google Scholar 

  96. French, S. W. & Romanowicz, B. A. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199, 1303–1327 (2014).

    Article  Google Scholar 

  97. Tarasov, L. A subset of GLAC1-D, GLAC2-A, and GLAC3-A last glacial cycle ice sheet chronologies for North America. Zenodo https://doi.org/10.5281/zenodo.15800380 (2025).

  98. Lecavalier, B. A subset of GLAC3-A last glacial cycle ice sheet chronologies for Antarctica. Zenodo https://doi.org/10.5281/zenodo.15811406 (2025).

  99. Lecavalier, B. S. et al. Antarctic Ice Sheet paleo-constraint database. Earth Syst. Sci. Data 15, 3573–3596 (2023).

    Article  Google Scholar 

  100. Milne, G. A. & Peros, M. Data–model comparison of Holocene sea-level change in the circum-Caribbean region. Glob. Planet. Change 107, 119–131 (2013).

    Article  Google Scholar 

  101. Love, R. et al. The contribution of glacial isostatic adjustment to projections of sea-level change along the Atlantic and Gulf coasts of North America. Earth’s Future 4, 440–464 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the US National Science Foundation (grants OCE-1502588 to T.E.T. and OCE-1502753 to B.E.R.). Additionally, a Vokes Fellowship from Tulane University supported U.M. We thank the Department of Geology and Geophysics at Louisiana State University for access to their Geoprobe. D. Weathers, D. Di Leonardo, K. Jankowski and C. Esposito assisted with collecting sediment cores, and M. Ramirez assisted with RTK elevation measurements. We are grateful to J. Southon and his staff at the University of California, Irvine, for carrying out the 14C dating. We thank G. Li and S.-Y. Yu for translating Chinese publications, and A. Hasan for help with some of the figures. This is a contribution to the PALSEA programme and IGCP 725 (Forecasting coastal change).

Author information

Authors and Affiliations

Authors

Contributions

T.E.T., G.A.M. and B.E.R. conceived the study. U.M. evaluated global RSL datasets, synthesized RSL histories, performed the data–model comparison and composed the initial manuscript draft. L.V. collected Mississippi Delta sediment cores and prepared 14C samples for dating; E.S. collected additional sediment cores and 14C samples. L.V. and B.E.R. carried out the δ13C measurements. L.T. and B.S.L. provided the ice-sheet chronologies; G.A.M. provided the GIA models. N.C. provided the code for the Bayesian modelling of the RSL histories. U.M., L.V. and T.E.T. created the figures and wrote the manuscript. U.M., T.E.T., G.A.M., L.V. and L.T. discussed the results. All authors contributed to the editing of the manuscript.

Corresponding author

Correspondence to Udita Mukherjee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Szymon Uścinowicz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Relative sea-level (RSL) data selection procedure.

Flow chart outlining the criteria used to evaluate global RSL data for potential inclusion in this study.

Extended Data Fig. 2 Cross section with 14 cores used for the new relative sea-level record from the eastern Mississippi Delta.

Correlation line represents the top of the paleosol that overlies the Pleistocene basement. Ages are (in most cases) weighted means of multiple 14C samples from a given stratigraphic level (all 14 C data are provided in Supplementary Table 1). Ages in black are associated with sea-level index points (bold) or upper limiting data points (not bold); ages in grey cannot be linked to past sea levels due to unsuitable paleoenvironmental conditions, post-depositional sediment compaction, or both. Map data from Atlas, LSU Department of Geography and Anthropology (http://atlas.lsu.edu).

Extended Data Fig. 3 Sea-level equivalent (9-7 ka) melt contribution for the North American (top panel) and Antarctic (bottom panel) ice models used in this study.

Model numbers can be cross-referenced against the ice model IDs used in the corresponding publications (refs. 24,25) and Supplement with details of the ice model ensembles discussed here.

Extended Data Fig. 4 Comparison between the rate of relative sea-level change simulated by 1D and 3D Earth models.

a, Mississippi Delta, b, Yangtze Delta, c, Rhine-Meuse Delta, d, Malay Peninsula. The solid lines show rates generated from the 1D Earth models used in the present study (Extended Data Table 1); the dashed lines show rates generated from six 3D Earth models, with two different global lithosphere models (‘AF’ for the model of Afonso et al. (2018) and ‘YO’ for the model of Yousefi et al. (2021)) and three different seismic models to infer lateral viscosity variations: ‘S40’, ‘SAV’, ‘SEM’(for, respectively, S40RTS, Savani, and SEMUCB-WM1; see Methods for more information).

Extended Data Fig. 5 Data-model misfit calculation for the four study areas based on 1764 different Earth and ice model configurations.

Each GIA model run is colored by its misfit statistic (ϕ(M)) value. The seven Earth models are plotted along the x-axis; the various combinations of ice models (see Methods) are plotted along the y-axis. Each tick mark along the y-axis indicates one NAIS ice model (designated by the runID) combined with the 12 different AIS models.

Extended Data Fig. 6 Holocene tidal range change in the four study areas.

The modern data are from Admiralty Tide Tables, older data from paleotidal models. In the Mississippi and Rhine-Meuse deltas, the paleo-indicative range (IR) of samples older than 8 ka was calculated by increasing the present-day IR by a factor of 1.5. In the case of the Yangtze Delta and Malay Peninsula (including Singapore), for RSL samples older than 8 ka, we have increased the present-day IR by a factor of 1.5 to calculate the paleo-IR and by a factor of 1.1 for samples younger than 8 ka.

Extended Data Table 1 Earth model parameters adopted for the glacial isostatic adjustment modelling

Supplementary information

Supplementary Information

Supplementary Notes and Supplementary Tables 1 and 2.

Supplementary Data 1

RSL data used in the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, U., Vetter, L., Milne, G.A. et al. Sea-level rise at the end of the last deglaciation dominated by North American ice sheets. Nat. Geosci. (2025). https://doi.org/10.1038/s41561-025-01806-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41561-025-01806-0

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene