Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Potassium-40 isotopic evidence for an extant pre-giant-impact component of Earth’s mantle

Abstract

Earth’s bulk composition has elemental and isotopic characteristics that cannot be fully reconciled with a mixture of known primitive meteorite compositions1,2,3. One potential explanation for this is that the proto-Earth accreted materials with isotopic signatures distinct from those accreted after the Moon-forming giant impact. Here we report high-precision mass-independent potassium isotopic measurements from thermal ionization mass spectrometry of terrestrial rocks from various ancient and modern sources in the crust and mantle that we argue are consistent with this explanation. Specifically, we found that some mafic Archaean rocks derived from the Hadean–Eoarchaean mantle (including samples from Isua, Nuvvuagittuq and the Kaapvaal Craton) and certain modern ocean island basalts (from La Réunion Island and Kama’ehuakanaloa volcano, Hawaii) exhibit an average 40K deficit of 65 parts per million compared to all other terrestrial samples analysed. The deficit distinguishes these samples from the bulk silicate Earth and any known meteorite group and cannot result from magmatic processes. Therefore, we propose this 40K deficit represents primitive proto-Earth mantle domains that largely escaped mantle mixing after the giant impact and exist in the present-day deep mantle, contributing to some modern hotspot volcanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ε40K data for terrestrial samples.
Fig. 2: The correlation between ε40K and ε100Ru in meteorites, Earth and proto-Earth.
Fig. 3: ε40K mixing models for constraining the amount of meteoritic addition to the proto-Earth by late accretion and the giant impact.

Data availability

The data that support the findings of this study are available via Figshare at https://doi.org/10.6084/m9.figshare.30041293 (ref. 76). Source data are provided with this paper.

References

  1. Mezger, K., Schönbächler, M. & Bouvier, A. Accretion of the Earth—missing components?. Space Sci. Rev. 216, 27 (2020).

    Article  CAS  Google Scholar 

  2. Nie, N. X. et al. Meteorites have inherited nucleosynthetic anomalies of potassium-40 produced in supernovae. Science 379, 372–376 (2023).

    Article  CAS  Google Scholar 

  3. Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).

    Article  Google Scholar 

  4. Chen, H.-W., Lee, T., Lee, D.-C., Shen, J. J.-S. & Chen, J.-C. 48Ca heterogeneity in differentiated meteorites. Astrophys. J. Lett. 743, L23 (2011).

    Article  Google Scholar 

  5. Dauphas, N., Davis, A. M., Marty, B. & Reisberg, L. The cosmic molybdenum–ruthenium isotope correlation. Earth Planet. Sci. Lett. 226, 465–475 (2004).

    Article  CAS  Google Scholar 

  6. Moynier, F., Dauphas, N. & Podosek, F. A. A search for 70Zn anomalies in meteorites. Astrophys. J. 700, L92 (2009).

    Article  CAS  Google Scholar 

  7. Niederer, F. R., Papanastassiou, D. A. & Wasserburg, G. J. Absolute isotopic abundances of Ti in meteorites. Geochim. Cosmochim. Acta 49, 835–851 (1985).

    Article  CAS  Google Scholar 

  8. Onyett, I. J. et al. Silicon isotope constraints on terrestrial planet accretion. Nature 619, 539–544 (2023).

    Article  CAS  Google Scholar 

  9. Steele, R. C. J., Elliott, T., Coath, C. D. & Regelous, M. Confirmation of mass-independent Ni isotopic variability in iron meteorites. Geochim. Cosmochim. Acta 75, 7906–7925 (2011).

    Article  CAS  Google Scholar 

  10. Trinquier, A., Birck, J.-L. & Allègre, C. J. Widespread 54Cr heterogeneity in the inner solar system. Astrophys. J. 655, 1179 (2007).

    Article  CAS  Google Scholar 

  11. Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    Article  CAS  Google Scholar 

  12. Moynier, F. & Fegley Jr., B. in The Early Earth: Accretion and Differentiation (eds Badro, J. & Walter, M.) 27–47 (AGU, 2015).

  13. Schiller, M., Bizzarro, M. & Fernandes, V. A. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the moon. Nature 555, 507–510 (2018).

    Article  CAS  Google Scholar 

  14. Fischer-Gödde, M. & Kleine, T. Ruthenium isotopic evidence for an inner solar system origin of the late veneer. Nature 541, 525–527 (2017).

    Article  Google Scholar 

  15. Render, J., Fischer-Gödde, M., Burkhardt, C. & Kleine, T. The cosmic molybdenum-neodymium isotope correlation and the building material of the Earth. Geochem. Persp. Let. 3, 170–178 (2017).

    Article  Google Scholar 

  16. Burkhardt, C. et al. Molybdenum isotope anomalies in meteorites: constraints on solar nebula evolution and origin of the Earth. Earth Planet. Sci. Lett. 312, 390–400 (2011).

    Article  CAS  Google Scholar 

  17. Johnston, S. et al. Nd isotope variation between the Earth–moon system and enstatite chondrites. Nature 611, 501–506 (2022).

    Article  CAS  Google Scholar 

  18. Frossard, P., Israel, C., Bouvier, A. & Boyet, M. Earth’s composition was modified by collisional erosion. Science 377, 1529–1532 (2022).

    Article  CAS  Google Scholar 

  19. Akram, W., Schönbächler, M., Bisterzo, S. & Gallino, R. Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the solar system. Geochim. Cosmochim. Acta 165, 484–500 (2015).

    Article  CAS  Google Scholar 

  20. Messling, N. et al. Ru and W isotope systematics in ocean island basalts reveals core leakage. Nature 642, 376–380 (2025).

    Article  CAS  Google Scholar 

  21. Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the moon, and Mars. Science 330, 1527–1530 (2010).

    Article  CAS  Google Scholar 

  22. Rubie, D. C. et al. Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science 353, 1141–1144 (2016).

    Article  CAS  Google Scholar 

  23. Meija, J. et al. Isotopic compositions of the elements 2013 (IUPAC technical report). Pure Appl. Chem. 88, 293–306 (2016).

    Article  CAS  Google Scholar 

  24. Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008).

    Article  CAS  Google Scholar 

  25. Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M. & Scoates, J. S. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nat. Geosci. 4, 831–838 (2011).

    Article  CAS  Google Scholar 

  26. Peters, B. J., Carlson, R. W., Day, J. M. D. & Horan, M. F. Hadean silicate differentiation preserved by anomalous 142Nd/144Nd ratios in the Réunion hotspot source. Nature 555, 89–93 (2018).

    Article  CAS  Google Scholar 

  27. Hensley, W. K., Bassett, W. A. & Huizenga, J. R. Pressure dependence of the radioactive decay constant of beryllium-7. Science 181, 1164–1165 (1973).

    Article  CAS  Google Scholar 

  28. Lee, K. K. M. & Steinle-Neumann, G. Ab-initio study of the effects of pressure and chemistry on the electron-capture radioactive decay constants of 7Be, 22Na and 40K. Earth Planet. Sci. Lett. 267, 628–636 (2008).

    Article  CAS  Google Scholar 

  29. O’Neil, J., Carlson, R. W., Francis, D. & Stevenson, R. K. Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–1831 (2008).

    Article  Google Scholar 

  30. Rizo, H. et al. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature 491, 96–100 (2012).

    Article  CAS  Google Scholar 

  31. Jackson, M. G. et al. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466, 853–856 (2010).

    Article  CAS  Google Scholar 

  32. Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    Article  CAS  Google Scholar 

  33. Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Article  CAS  Google Scholar 

  34. Parai, R. A dry ancient plume mantle from noble gas isotopes. Proc. Natl Acad. Sci. USA 119, e2201815119 (2022).

    Article  CAS  Google Scholar 

  35. Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).

    Article  CAS  Google Scholar 

  36. Canup, R. M. & Asphaug, E. Origin of the moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    Article  CAS  Google Scholar 

  37. Ćuk, M. & Stewart, S. T. Making the moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).

    Article  Google Scholar 

  38. Walker, R. J. Highly siderophile elements in the Earth, moon and Mars: update and implications for planetary accretion and differentiation. Geochemistry 69, 101–125 (2009).

    Article  CAS  Google Scholar 

  39. Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004).

    Article  CAS  Google Scholar 

  40. Dauphas, N. et al. The extent, nature, and origin of K and Rb depletions and isotopic fractionations in Earth, the moon, and other planetary bodies. Planet. Sci. J. 3, 29 (2022).

    Article  CAS  Google Scholar 

  41. Farcy, B., Arevalo, R. Jr & McDonough, W. F. K/U of the MORB source and silicate Earth. J. Geophys. Res.: Solid Earth 125, e2020JB020245 (2020).

    Article  CAS  Google Scholar 

  42. Peplowski, P. N. et al. Radioactive elements on Mercury’s surface from MESSENGER: implications for the planet’s formation and evolution. Science 333, 1850–1852 (2011).

    Article  CAS  Google Scholar 

  43. Maltese, A. & Mezger, K. The Pb isotope evolution of bulk silicate Earth: constraints from its accretion and early differentiation history. Geochim. Cosmochim. Acta 271, 179–193 (2020).

    Article  CAS  Google Scholar 

  44. Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).

    Article  CAS  Google Scholar 

  45. Wielandt, D. & Bizzarro, M. A TIMS-based method for the high precision measurements of the three-isotope potassium composition of small samples. J. Anal. At. Spectrom. 26, 366–377 (2011).

    Article  CAS  Google Scholar 

  46. Bryan, W. B. & Moore, J. G. Compositional variations of young basalts in the Mid-Atlantic Ridge rift valley near lat 36°49′N. GSA Bull. 88, 556–570 (1977).

    Article  CAS  Google Scholar 

  47. Bourdon, B., Goldstein, S. J., Bourlès, D., Murrell, M. T. & Langmuir, C. H. Evidence from 10Be and U series disequilibria on the possible contamination of mid-ocean ridge basalt glasses by sedimentary material. Geochem. Geophys. Geosyst. 1, 8 (2000).

  48. Herret, M.-T., Peters, B. J., Kim, D., Castillo, P. R. & Mundl-Petermeier, A. Decoupling of short-lived radiogenic and helium isotopes in the Marquesas hotspot. Chem. Geol. 640, 121727 (2023).

    Article  CAS  Google Scholar 

  49. Halfar, M. C., Peters, B. J., Day, J. M. D. & Schönbächler, M. An isotopically enriched mantle component in the source of Rodrigues, Réunion volcanic hotspot. Geochim. Cosmochim. Acta 355, 32–47 (2023).

    Article  CAS  Google Scholar 

  50. Abouchami, W. et al. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856 (2005).

    Article  CAS  Google Scholar 

  51. Pietruszka, A. J., Norman, M. D., Garcia, M. O., Marske, J. P. & Burns, D. H. Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of recycled oceanic crust. Earth Planet. Sci. Lett. 361, 298–309 (2013).

    Article  CAS  Google Scholar 

  52. Pietruszka, A. J. et al. Excesses of seawater-derived 234U in volcanic glasses from Loihi Seamount due to crustal contamination. Earth Planet. Sci. Lett. 304, 280–289 (2011).

    Article  CAS  Google Scholar 

  53. Carlson, R. W., Grove, T. L. & Donnelly-Nolan, J. M. Origin of primitive tholeiitic and calc-alkaline basalts at Newberry Volcano, Oregon. Geochem. Geophys. Geosyst. 19, 1360–1377 (2018).

    Article  CAS  Google Scholar 

  54. Heinonen, J. S. & Luttinen, A. V. Mineral chemical evidence for extremely magnesian subalkaline melts from the Antarctic extension of the Karoo large igneous province. Mineral. Petrol. 99, 201–217 (2010).

    Article  CAS  Google Scholar 

  55. Shirey, S. B., Klewin, K. W., Berg, J. H. & Carlson, R. W. Temporal changes in the sources of flood basalts: isotopic and trace element evidence from the 1100 Ma old Keweenawan Mamainse Point Formation, Ontario, Canada. Geochim. Cosmochim. Acta 58, 4475–4490 (1994).

    Article  CAS  Google Scholar 

  56. Peters, B. J. & Day, J. M. D. A geochemical link between plume head and tail volcanism. Geochem. Persp. Let. 5, 29–34 (2017).

    Article  Google Scholar 

  57. Arndt, N. Komatiites, kimberlites, and boninites. J. Geophys. Res. Solid Earth 108, B6 (2003).

  58. Walker, R. J., Shirey, S. B. & Stecher, O. Comparative ReOs, SmNd and RbSr isotope and trace element systematics for Archean komatiite flows from Munro Township, Abitibi Belt, Ontario. Earth Planet. Sci. Lett. 87, 1–12 (1988).

    Article  CAS  Google Scholar 

  59. McLennan, S. M. & Taylor, S. R. Geochemical standards for sedimentary rocks: trace-element data for U.S.G.S. standards SCo-1, MAG-1 and SGR-1. Chem. Geol. 29, 333–343 (1980).

    Article  CAS  Google Scholar 

  60. Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. The birth of a cratonic nucleus: lithogeochemical evolution of the 4.02–2.94Ga Acasta Gneiss Complex. Precambrian Res. 281, 453–472 (2016).

    Article  CAS  Google Scholar 

  61. Bauer, A. M., Fisher, C. M., Vervoort, J. D. & Bowring, S. A. Coupled zircon Lu–Hf and U–Pb isotopic analyses of the oldest terrestrial crust, the >4.03 Ga Acasta Gneiss Complex. Earth Planet. Sci. Lett. 458, 37–48 (2017).

    Article  CAS  Google Scholar 

  62. Fisher, C. M., Bauer, A. M. & Vervoort, J. D. Disturbances in the Sm–Nd isotope system of the Acasta Gneiss Complex—implications for the Nd isotope record of the early Earth. Earth Planet. Sci. Lett. 530, 115900 (2020).

    Article  CAS  Google Scholar 

  63. Sole, C. et al. Evidence for Hadean mafic intrusions in the Nuvvuagittuq Greenstone Belt, Canada. Science 388, 1431–1435 (2025).

    Article  CAS  Google Scholar 

  64. O’Neil, J., Carlson, R. W., Paquette, J.-L. & Francis, D. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambrian Res. 220–221, 23–44 (2012).

    Article  Google Scholar 

  65. Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth Planet. Sci. Lett. 312, 267–279 (2011).

    Article  CAS  Google Scholar 

  66. Frei, R., Rosing, M. T., Waight, T. E. & Ulfbeck, D. G. Hydrothermal-metasomatic and tectono-metamorphic processes in the Isua supracrustal belt (West Greenland): a multi-isotopic investigation of their effects on the earth’s oldest oceanic crustal sequence. Geochim. Cosmochim. Acta 66, 467–486 (2002).

    Article  CAS  Google Scholar 

  67. Hammerli, J., Kemp, A. I. S. & Whitehouse, M. J. In situ trace element and Sm-Nd isotope analysis of accessory minerals in an Eoarchean tonalitic gneiss from Greenland: implications for Hf and Nd isotope decoupling in Earth’s ancient rocks. Chem. Geol. 524, 394–405 (2019).

    Article  CAS  Google Scholar 

  68. Wang, D., Qiu, X.-F. & Carlson, R. W. The Eoarchean Muzidian gneiss complex: long-lived Hadean crustal components in the building of Archean continents. Earth Planet. Sci. Lett. 605, 118037 (2023).

    Article  CAS  Google Scholar 

  69. Salerno, R., Vervoort, J., Fisher, C., Kemp, A. & Roberts, N. The coupled Hf-Nd isotope record of the early Earth in the Pilbara Craton. Earth Planet. Sci. Lett. 572, 117139 (2021).

    Article  CAS  Google Scholar 

  70. Taylor, J., Stevens, G., Armstrong, R. & Kisters, A. F. M. Granulite facies anatexis in the Ancient Gneiss Complex, Swaziland, at 2.73 Ga: mid-crustal metamorphic evidence for mantle heating of the Kaapvaal craton during Ventersdorp magmatism. Precambrian Res. 177, 88–102 (2010).

    Article  CAS  Google Scholar 

  71. Carlson, R. W., Hunter, D. R. & Barker, F. Sm–Nd age and isotopic systematics of the bimodal suite, ancient gneiss complex, Swaziland. Nature 305, 701–704 (1983).

    Article  CAS  Google Scholar 

  72. Bickford, M. E., Wooden, J. L. & Bauer, R. L. SHRIMP study of zircons from Early Archean rocks in the Minnesota River Valley: implications for the tectonic history of the Superior Province. GSA Bull. 118, 94–108 (2006).

    Article  Google Scholar 

  73. Wang, D. et al. Comparative Sm-Nd isotope behavior of accessory minerals: reconstructing the Sm-Nd isotope evolution of early Archean rocks. Geochim. Cosmochim. Acta 318, 190–212 (2022).

    Article  CAS  Google Scholar 

  74. Alexander, C. M. O. Quantitative models for the elemental and isotopic fractionations in chondrites: the carbonaceous chondrites. Geochim. Cosmochim. Acta 254, 277–309 (2019).

    Article  CAS  Google Scholar 

  75. Alexander, C. M. O. Quantitative models for the elemental and isotopic fractionations in the chondrites: the non-carbonaceous chondrites. Geochim. Cosmochim. Acta 254, 246–276 (2019).

    Article  CAS  Google Scholar 

  76. Wang, D. K isotope data of samples and standards. figshare https://doi.org/10.6084/m9.figshare.30041293 (2025).

Download references

Acknowledgements

We thank P. Ni, C. Alexander, A. Shahar and Y. Liu for helpful discussions; J. O’Neil (University of Ottawa), H. Rizo (Carleton University), A. Luttinen (Finnish Museum of Natural History), J. Reimink (Pennsylvania State University), A. Bauer (University of Wisconsin-Madison), L. Hulbert (Geological Survey of Canada), M. Bickford (Syracuse University), R. Salerno (Washington State University) and A. Kemp (The University of Western Australia) for providing samples for this study; M. Jordan for the assistance in the clean lab and T. Mock for maintaining the mass spectrometer at peak condition. This work was supported by the National Key Research and Development Program of China (2024YFF0807504) to D.W. and Carnegie Postdoctoral Fellowships to D.W. and N.X.N.

Author information

Authors and Affiliations

Authors

Contributions

D.W., N.X.N., R.W.C. and S.B.S. initiated and designed the study. D.W. and N.X.N. developed the analytical methods and performed the analytical work. All authors contributed to the analysis and interpretation of the data. D.W. wrote the initial draft of the paper. All authors contributed to the editing of the paper.

Corresponding authors

Correspondence to Da Wang or Nicole X. Nie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Mario Fischer-Gödde, Bernard Marty and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Three-month reproducibility of the primary K standard.

Forty-five repeated measurements of K standard yielded an ε40K two standard deviation (2 SD) of 0.28.

Source data

Extended Data Fig. 2 The correlation between SiO2 and alkali contents of the La Réunion samples.

(a) SiO2 vs. total alkali (Na2O + K2O) (b) SiO2 vs. K2O. Data are from49. Blue circles denote the samples measured for K isotopic composition in this study. Sample RU0709, which shows no resolvable K anomaly, has the highest K2O content (0.73%) among the suite of La Réunion samples and plots above the 95% confidence interval of the correlation, suggesting a likely contamination with crustal K.

Source data

Extended Data Fig. 3 A mixing curve showing the correlated change of K concentration and ε40K values with various degrees of crustal K addition.

The labeled percentage indicates the addition amount of crustal materials in the mixture. The blue dashed lines mark the resolvability of 40K anomaly (ε40K = ± 0.3) and the shaded area indicates no resolvable 40K anomaly. The ε40K values of OIB and crustal materials used for the mixing curve are -0.6 ± 0.1 and 0, respectively. The K2O concentrations of OIB and crustal materials are assumed to be 0.35% and 2%, respectively. The mixing curve shows that an OIB sample contaminated with >15% crustal materials would result in ε40K values unresolvable from the modern mantle.

Source data

Extended Data Fig. 4 The secondary modification of Kama’ehuakanaloa (formerly Lō‘ihi) samples.

Elevated 234U/238U and 86Sr/87Sr ratios indicate seawater alteration and contamination with hydrothermally altered rocks, respectively. The most pristine sample 6K491-2 shows a resolvable K isotopic anomaly. In contrast, samples 1804-1 and 1803-16 do not show resolvable K isotopic anomalies, which may reflect the overprint of the original mantle K during alteration and crustal contamination. Data source52.

Source data

Extended Data Table 1 Parameter values used in the component mixing model

Supplementary information

Supplementary Information

Supplementary text, Figs. 1 and 2 and Tables 1–3.

Supplementary Tables 2 and 3

Supplementary Table 2: parameter values used to model the effect of impactor–proto-Earth mixing on the isotopic compositions of K, O, Ti, Cr and Ca of the bulk silicate Earth. Supplementary Table 3: the ε40K values of individual samples.

Source data

Source Data Extended Data Fig. 1

Source data for Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Source data for Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Source data for Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Source data for Extended Data Fig 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Nie, N.X., Peters, B.J. et al. Potassium-40 isotopic evidence for an extant pre-giant-impact component of Earth’s mantle. Nat. Geosci. (2025). https://doi.org/10.1038/s41561-025-01811-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41561-025-01811-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing