Abstract
The stratosphere is generally considered to be stable, with minimal vertical mixing. However, deep convection can transport low-altitude material above the tropopause. Here we use in situ single-particle measurements from the Dynamics and Chemistry of the Summer Stratosphere mission to show that carbonaceous-sulfate particles from the troposphere account for up to 90% of the stratospheric particles with physical diameter from 0.1 to 1.5 µm in a 4-km layer above the tropopause during an active fire season in 2022. We find that ~43% of the stratospheric carbonaceous-sulfate particles originate from biomass burning. These particles, which are chemically complex and organic-rich, do not remain unchanged once injected into the stratosphere, but form mixtures containing both tropospheric and stratospheric components, indicating perturbation of the stratospheric aerosol layer. We suggest that the increasing frequency and intensity of wildfires combined with increasing deep convection as the climate warms may enhance the delivery of biomass burning products to the lower stratosphere, with implications for ozone chemistry and radiative forcing.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Data availability
DCOTSS aircraft data that support the findings of this study are publicly available at the NASA Atmospheric Science Data Center (https://doi.org/10.5067/ASDC/DCOTSS-Aircraft-Data_1)73. Raw data underlying the figures are available on request.
References
Junge, C. E., Chagnon, C. W. & Manson, J. E. Stratospheric aerosols. J. Meteor. 18, 81–108 (1961).
Junge, C. E. & Manson, J. E. Stratospheric aerosol studies. J. Geophys. Res. 66, 2163–2182 (1961).
Gettelman, A. et al. The extratropical upper troposphere and lower stratosphere. Rev. Geophys. 49, 2011RG000355 (2011).
Deshler, T. A review of global stratospheric aerosol: measurements, importance, life cycle and local stratospheric aerosol. Atmos. Res. 90, 223–232 (2008).
Trickl, T. et al. Measurement report: violent biomass burning and volcanic eruptions – a new period of elevated stratospheric aerosol over central Europe (2017 to 2023) in a long series of observations. Atmos. Chem. Phys. 24, 1997–2021 (2024).
Murphy, D. M., Thomson, D. S. & Mahoney, M. J. In situ measurements of organics, meteoritic material, mercury and other elements in aerosols at 5 to 19 kilometers. Science 282, 1664–1669 (1998).
Trepte, C. R. & Hitchman, M. H. Tropical stratospheric circulation deduced from satellite aerosol data. Nature 355, 626–628 (1992).
Kremser, S. et al. Stratospheric aerosol—observations, processes and impact on climate: stratospheric aerosol. Rev. Geophys. 54, 278–335 (2016).
Fromm, M. D. et al. The untold story of pyrocumulonimbus. Bull. Am. Meteor. Soc. 91, 1193–1210 (2010).
Gordon, A. E. et al. Airborne observations of upper troposphere and lower stratosphere composition change in active convection producing above-anvil cirrus plumes. Atmos. Chem. Phys. 24, 7591–7608 (2024).
Katich, J. M. et al. Pyrocumulonimbus affect average stratospheric aerosol composition. Science 379, 815–820 (2023).
Waibel, A. E. et al. Highly elevated carbon monoxide concentrations in the upper troposphere and lowermost stratosphere at northern midlatitudes during the STREAM II summer campaign in 1994. Chemosphere 1, 233–248 (1999).
Jost, H. et al. In-situ observations of mid-latitude forest fire plumes deep in the stratosphere. Geophys. Res. Lett. 31, 2003GL019253 (2004).
Kablick, G. P., Allen, D. R., Fromm, M. D. & Nedoluha, G. E. Australian pyroCb smoke generates synoptic-scale stratospheric anticyclones. Geophys. Res. Lett. 47, e2020GL088101 (2020).
Allen, D. R., Fromm, M. D., Kablick Iii, G. P. & Nedoluha, G. E. Smoke with Induced Rotation and Lofting (SWIRL) in the stratosphere. J. Atmos. Sci. 77, 4297–4316 (2020).
Khaykin, S. et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 1, 22 (2020).
Peterson, D. A. et al. Australia’s Black Summer pyrocumulonimbus super outbreak reveals potential for increasingly extreme stratospheric smoke events. npj Clim. Atmos. Sci. 4, 38 (2021).
Senf, F. et al. How the extreme 2019–2020 Australian wildfires affected global circulation and adjustments. Atmos. Chem. Phys. 23, 8939–8958 (2023).
Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier Spring increase western U.S. forest wildfire activity. Science 313, 940–943 (2006).
Cunningham, C. X., Williamson, G. J. & Bowman, D. M. J. S. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. 8, 1420–1425 (2024).
Tinney, E. N., Homeyer, C. R., Bedka, K. M. & Scarino, B. R. The response of tropopause-overshooting convection over North America to climate change. J. Clim. 37, 6183–6200 (2024).
Solomon, S. et al. Chlorine activation and enhanced ozone depletion induced by wildfire aerosol. Nature 615, 259–264 (2023).
Jacobson, M. Z. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J. Geophys. Res. Atmos. 119, 8980–9002 (2014).
Murphy, D. M. et al. Radiative and chemical implications of the size and composition of aerosol particles in the existing or modified global stratosphere. Atmos. Chem. Phys. 21, 8915–8932 (2021).
Jacquot, J. L. et al. A new airborne single particle mass spectrometer: PALMS-NG. Aerosol Sci. Technol. 58, 991–1007 (2024).
Murphy, D. M., Cziczo, D. J., Hudson, P. K. & Thomson, D. S. Carbonaceous material in aerosol particles in the lower stratosphere and tropopause region. J. Geophys. Res. 112, 2006JD007297 (2007).
Li, Y. et al. Enhanced radiative cooling by large aerosol particles from pyrocumulonimbus. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-5348977/v1 (2024).
Sayres, D. S. et al. Using the NAMA as a natural integrator to quantify the convective contribution to lower stratospheric water vapor over North America. J. Geophys. Res. Atmos. 129, e2024JD041641 (2024).
Baldwin, M. P. et al. 100 Years of progress in understanding the stratosphere and mesosphere. Meteorol. Monogr. 59, 27.1–27.62 (2019).
Solomon, D. L., Bowman, K. P. & Homeyer, C. R. Tropopause-penetrating convection from three-dimensional gridded NEXRAD data. J. Appl. Meteorol. Climatol. 55, 465–478 (2016).
Zahn, A., Christner, E., Van Velthoven, P. F. J., Rauthe-Schöch, A. & Brenninkmeijer, C. A. M. Processes controlling water vapor in the upper troposphere/lowermost stratosphere: an analysis of 8 years of monthly measurements by the IAGOS-CARIBIC observatory. J. Geophys. Res. Atmos. 119, 11505–11525 (2014).
Baars, H. et al. The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET. Atmos. Chem. Phys. 19, 15183–15198 (2019).
Solomon, S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37, 275–316 (1999).
Stone, K. et al. Two-years of stratospheric chemistry perturbations from the 2019–2020 Australian wildfire smoke. Atmos. Chem. Phys. 25, 7683–7697 (2025).
Guan, J. et al. Using the stratosphere to understand long-term organic aerosol photolysis. Preprint at ESS Open Archive https://doi.org/10.22541/essoar.174585008.87516680/v1 (2025).
Reid, J. S., Koppmann, R., Eck, T. F. & Eleuterio, D. P. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 5, 799–825 (2005).
McClure, C. D., Lim, C. Y., Hagan, D. H., Kroll, J. H. & Cappa, C. D. Biomass-burning-derived particles from a wide variety of fuels – Part 1: Properties of primary particles. Atmos. Chem. Phys. 20, 1531–1547 (2020).
Knopf, D. A., Alpert, P. A. & Wang, B. The role of organic aerosol in atmospheric ice nucleation: a review. ACS Earth Space Chem. 2, 168–202 (2018).
Murray, B. J. et al. Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci. 3, 233–237 (2010).
Murphy, D. M. et al. Metals from spacecraft reentry in stratospheric aerosol particles. Proc. Natl Acad. Sci. USA 120, e2313374120 (2023).
Murray, B. J., Mangan, T. P., Määttänen, A. & Plane, J. M. C. Ephemeral ice clouds in the upper mesosphere of Venus. J. Geophys. Res. Planets 128, e2023JE007974 (2023).
Haywood, J. M. & Shine, K. P. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. Lett. 22, 603–606 (1995).
Li, Y., Dykema, J., Deshler, T. & Keutsch, F. Composition dependence of stratospheric aerosol shortwave radiative forcing in northern midlatitudes. Geophys. Res. Lett. 48, e2021GL094427 (2021).
Liu, N., Liu, C. & Hayden, L. Climatology and detection of overshooting convection from 4 years of GPM precipitation radar and passive microwave observations. J. Geophys. Res. Atmos. 125, e2019JD032003 (2020).
Visioni, D. et al. G6-1.5K-SAI: a new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies. Geosci. Model Dev. 17, 2583–2596 (2024).
Murphy, D. M. et al. Particle generation and resuspension in aircraft inlets when flying in clouds. Aerosol Sci. Technol. 38, 401–409 (2004).
Froyd, K. D. et al. A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry. Atmos. Meas. Tech. 12, 6209–6239 (2019).
Li, Y. et al. In situ measurements of perturbations to stratospheric aerosol and modeled ozone and radiative impacts following the 2021 La Soufrière eruption. Atmos. Chem. Phys. 23, 15351–15364 (2023).
Signorell, R. & Reid, J. P. (eds) in Fundamentals and Applications in Aerosol Spectroscopy 438–481 (CRC Press, 2010); https://doi.org/10.1201/b10417-21
Sargent, M. R. et al. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere. Rev. Sci. Instrum. 84, 074102 (2013).
Pittman, J. V. et al. Aircraft observations of biomass burning pollutants in the equatorial lower stratosphere over the tropical western Pacific during boreal winter. Atmos. Chem. Phys. 25, 7543–7562 (2025).
Bowman, K. P. et al. The Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) Project. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-24-0177.1 (2025).
Thomson, D. S., Schein, M. E. & Murphy, D. M. Particle analysis by laser mass spectrometry WB-57F instrument overview. Aerosol Sci. Technol. 33, 153–169 (2000).
Gao, R. S. et al. A light-weight, high-sensitivity particle spectrometer for PM2.5 aerosol measurements. Aerosol Sci. Technol. 50, 88–99 (2016).
Tomlin, J. M. et al. Chemical composition and morphological analysis of atmospheric particles from an intensive bonfire burning festival. Environ. Sci. Atmos. https://doi.org/10.1039/D2EA00037G (2022).
Tomlin, J. M. et al. Chemical imaging of fine mode atmospheric particles collected from a research aircraft over agricultural fields. ACS Earth Space Chem. 4, 2171–2184 (2020).
Tomlin, J. M. et al. Impact of dry intrusion events on the composition and mixing state of particles during the winter Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA). Atmos. Chem. Phys. 21, 18123–18146 (2021).
Fraund, M. et al. Quantitative capabilities of STXM to measure spatially resolved organic volume fractions of mixed organic/inorganic particles. Atmos. Meas. Tech. 12, 1619–1633 (2019).
Fraund, M. et al. Elemental mixing state of aerosol particles collected in central Amazonia during GoAmazon2014/15. Atmosphere 8, 173 (2017).
Laskin, A. et al. A new approach to determining gas-particle reaction probabilities and application to the heterogeneous reaction of deliquesced sodium chloride particles with gas-phase hydroxyl radicals. J. Phys. Chem. A 110, 10619–10627 (2006).
Moffet, R. C., Henn, T., Laskin, A. & Gilles, M. K. Automated chemical analysis of internally mixed aerosol particles using X-ray spectromicroscopy at the carbon K-edge. Anal. Chem. 82, 7906–7914 (2010).
Moffet, R. C. et al. Morphology and mixing of black carbon particles collected in central California during the CARES field study. Atmos. Chem. Phys. 16, 14515–14525 (2016).
O’Brien, R. E. et al. Chemical imaging of ambient aerosol particles: observational constraints on mixing state parameterization. J. Geophys. Res. Atmos. 120, 9591–9605 (2015).
Jimenez, J. L. et al. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (2009).
Rivera-Adorno, F. A. et al. Estimating viscosity of individual substrate-deposited particles from measurements of their height-to-width ratios. Aerosol Sci. Technol. 58, 401–410 (2023).
Gordon, I. E. et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 277, 107949 (2022).
Scott, S. G., Bui, T. P., Chan, K. R. & Bowen, S. W. The meteorological measurement system on the NASA ER-2 aircraft. J. Atmos. Ocean. Technol. 7, 525–540 (1990).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteor. Soc. 146, 1999–2049 (2020).
Cooney, J. W., Bowman, K. P., Homeyer, C. R. & Fenske, T. M. Ten year analysis of tropopause-overshooting convection using GridRad data. J. Geophys. Res. Atmos. 123, 329–343 (2018).
Griffin, S. M., Bedka, K. M. & Velden, C. S. A method for calculating the height of overshooting convective cloud tops using satellite-based IR imager and CloudSat cloud profiling radar observations. J. Appl. Meteorol. Climatol. 55, 479–491 (2016).
Homeyer, C. R. et al. Extreme altitudes of stratospheric hydration by midlatitude convection observed during the DCOTSS field campaign. Geophys. Res. Lett. 50, e2023GL104914 (2023).
Homeyer, C. R. et al. Stratospheric hydration processes in tropopause-overshooting convection revealed by tracer-tracer correlations from the DCOTSS field campaign. J. Geophys. Res. Atmos. 129, e2024JD041340 (2024).
Homeyer, C. Dynamics and chemistry of the summer stratosphere airborne data products. NASA Langley Atmospheric Science Data Center Distributed Active Archive Center https://doi.org/10.5067/ASDC/DCOTSS-AIRCRAFT-DATA_1 (2022).
Acknowledgements
The DCOTSS mission and subsequent analyses were supported by NASA under grants nos. 80NSSC19K1058 (A.L., D.J.C., D.M.M., F.A.R.-A., G.P.S., J.L.J., M.F., T.E.O., R.C.M., S.A.L.S. and X.S.), 80NSSC19K0326 (F.N.K., J.A.D., J.B.S., J.V.P. and Y.L.), 80NSSC19K0341 (K.P.B.) and 80NSSC19K0347 (C.R.H.). We thank the DCOTSS flight and all the science teams. Special thanks go to the NASA Earth Science Project Office and ER-2 flight and ground crews for their assistance and support. We also thank K. D. Froyd, D. S. Thomson, K. Slovacek, M. Lawler and M. Abou-Ghanem for supporting the development of PALMS-NG. We thank E. Ray for discussions on the two-step process of convective overshoot.
Author information
Authors and Affiliations
Contributions
X.S. analysed data, produced tables and figures, and was the lead writer of the paper. D.J.C. assisted with data interpretation and preparation of the paper. J.L.J., X.S. and D.J.C. collected data. G.P.S. and D.M.M. had important roles in PALMS-NG development. Y.L., J.A.D. and F.N.K. provided DPOPS results, designed the mini-MOUDI sampling methods and collected filter samples, and helped with discussions on climate impact. S.A.L.S., F.A.R.-A., T.E.O., M.F., R.C.M. and A.L. provided STXM/NEXAFS results, and helped with the discussion on stratospheric ozone impact. J.V.P. provided HUPCRS data and discussions on the tropical origin of the air. J.B.S. was the instrument-aircraft lead and provided water vapour results. C.R.H. was the science investigation manager and data manager for DCOTSS and provided feature analysis results. K.P.B. was the principal investigator of the DCOTSS mission and provided general comments on this paper. All authors contributed to the final text.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Jianmin Chen and the other, anonymous, reviewers for their contribution to the peer review of this work. Primary Handling Editors: Camilla Brunello, Xujia Jiang and Carolina Ortiz Guerrero, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Background, Notes 1–7, Figs. 1–5 and Table 1.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shen, X., Jacquot, J.L., Li, Y. et al. Stratospheric aerosol perturbation by tropospheric biomass burning and deep convection. Nat. Geosci. (2025). https://doi.org/10.1038/s41561-025-01821-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41561-025-01821-1