Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stratospheric aerosol perturbation by tropospheric biomass burning and deep convection

Abstract

The stratosphere is generally considered to be stable, with minimal vertical mixing. However, deep convection can transport low-altitude material above the tropopause. Here we use in situ single-particle measurements from the Dynamics and Chemistry of the Summer Stratosphere mission to show that carbonaceous-sulfate particles from the troposphere account for up to 90% of the stratospheric particles with physical diameter from 0.1 to 1.5 µm in a 4-km layer above the tropopause during an active fire season in 2022. We find that ~43% of the stratospheric carbonaceous-sulfate particles originate from biomass burning. These particles, which are chemically complex and organic-rich, do not remain unchanged once injected into the stratosphere, but form mixtures containing both tropospheric and stratospheric components, indicating perturbation of the stratospheric aerosol layer. We suggest that the increasing frequency and intensity of wildfires combined with increasing deep convection as the climate warms may enhance the delivery of biomass burning products to the lower stratosphere, with implications for ozone chemistry and radiative forcing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of stratospheric dynamics and particles.
Fig. 2: Selected flight tracks and number fractions of stratospheric particles (from 31 May to 27 June 2022).
Fig. 3: Chemical composition of stratospheric particles.
Fig. 4: Vertical profiles of water vapour and particles.
Fig. 5: Vertical profiles of three main stratospheric particle types.

Data availability

DCOTSS aircraft data that support the findings of this study are publicly available at the NASA Atmospheric Science Data Center (https://doi.org/10.5067/ASDC/DCOTSS-Aircraft-Data_1)73. Raw data underlying the figures are available on request.

References

  1. Junge, C. E., Chagnon, C. W. & Manson, J. E. Stratospheric aerosols. J. Meteor. 18, 81–108 (1961).

    Article  Google Scholar 

  2. Junge, C. E. & Manson, J. E. Stratospheric aerosol studies. J. Geophys. Res. 66, 2163–2182 (1961).

    Article  CAS  Google Scholar 

  3. Gettelman, A. et al. The extratropical upper troposphere and lower stratosphere. Rev. Geophys. 49, 2011RG000355 (2011).

    Article  Google Scholar 

  4. Deshler, T. A review of global stratospheric aerosol: measurements, importance, life cycle and local stratospheric aerosol. Atmos. Res. 90, 223–232 (2008).

    Article  CAS  Google Scholar 

  5. Trickl, T. et al. Measurement report: violent biomass burning and volcanic eruptions – a new period of elevated stratospheric aerosol over central Europe (2017 to 2023) in a long series of observations. Atmos. Chem. Phys. 24, 1997–2021 (2024).

    Article  CAS  Google Scholar 

  6. Murphy, D. M., Thomson, D. S. & Mahoney, M. J. In situ measurements of organics, meteoritic material, mercury and other elements in aerosols at 5 to 19 kilometers. Science 282, 1664–1669 (1998).

    Article  CAS  Google Scholar 

  7. Trepte, C. R. & Hitchman, M. H. Tropical stratospheric circulation deduced from satellite aerosol data. Nature 355, 626–628 (1992).

    Article  Google Scholar 

  8. Kremser, S. et al. Stratospheric aerosol—observations, processes and impact on climate: stratospheric aerosol. Rev. Geophys. 54, 278–335 (2016).

    Article  Google Scholar 

  9. Fromm, M. D. et al. The untold story of pyrocumulonimbus. Bull. Am. Meteor. Soc. 91, 1193–1210 (2010).

    Article  Google Scholar 

  10. Gordon, A. E. et al. Airborne observations of upper troposphere and lower stratosphere composition change in active convection producing above-anvil cirrus plumes. Atmos. Chem. Phys. 24, 7591–7608 (2024).

    Article  CAS  Google Scholar 

  11. Katich, J. M. et al. Pyrocumulonimbus affect average stratospheric aerosol composition. Science 379, 815–820 (2023).

    Article  CAS  Google Scholar 

  12. Waibel, A. E. et al. Highly elevated carbon monoxide concentrations in the upper troposphere and lowermost stratosphere at northern midlatitudes during the STREAM II summer campaign in 1994. Chemosphere 1, 233–248 (1999).

    CAS  Google Scholar 

  13. Jost, H. et al. In-situ observations of mid-latitude forest fire plumes deep in the stratosphere. Geophys. Res. Lett. 31, 2003GL019253 (2004).

    Article  Google Scholar 

  14. Kablick, G. P., Allen, D. R., Fromm, M. D. & Nedoluha, G. E. Australian pyroCb smoke generates synoptic-scale stratospheric anticyclones. Geophys. Res. Lett. 47, e2020GL088101 (2020).

    Article  Google Scholar 

  15. Allen, D. R., Fromm, M. D., Kablick Iii, G. P. & Nedoluha, G. E. Smoke with Induced Rotation and Lofting (SWIRL) in the stratosphere. J. Atmos. Sci. 77, 4297–4316 (2020).

    Article  Google Scholar 

  16. Khaykin, S. et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 1, 22 (2020).

    Article  Google Scholar 

  17. Peterson, D. A. et al. Australia’s Black Summer pyrocumulonimbus super outbreak reveals potential for increasingly extreme stratospheric smoke events. npj Clim. Atmos. Sci. 4, 38 (2021).

    Article  Google Scholar 

  18. Senf, F. et al. How the extreme 2019–2020 Australian wildfires affected global circulation and adjustments. Atmos. Chem. Phys. 23, 8939–8958 (2023).

    Article  CAS  Google Scholar 

  19. Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier Spring increase western U.S. forest wildfire activity. Science 313, 940–943 (2006).

    Article  CAS  Google Scholar 

  20. Cunningham, C. X., Williamson, G. J. & Bowman, D. M. J. S. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. 8, 1420–1425 (2024).

    Article  Google Scholar 

  21. Tinney, E. N., Homeyer, C. R., Bedka, K. M. & Scarino, B. R. The response of tropopause-overshooting convection over North America to climate change. J. Clim. 37, 6183–6200 (2024).

    Article  Google Scholar 

  22. Solomon, S. et al. Chlorine activation and enhanced ozone depletion induced by wildfire aerosol. Nature 615, 259–264 (2023).

    Article  CAS  Google Scholar 

  23. Jacobson, M. Z. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J. Geophys. Res. Atmos. 119, 8980–9002 (2014).

    Article  CAS  Google Scholar 

  24. Murphy, D. M. et al. Radiative and chemical implications of the size and composition of aerosol particles in the existing or modified global stratosphere. Atmos. Chem. Phys. 21, 8915–8932 (2021).

    Article  CAS  Google Scholar 

  25. Jacquot, J. L. et al. A new airborne single particle mass spectrometer: PALMS-NG. Aerosol Sci. Technol. 58, 991–1007 (2024).

    Article  CAS  Google Scholar 

  26. Murphy, D. M., Cziczo, D. J., Hudson, P. K. & Thomson, D. S. Carbonaceous material in aerosol particles in the lower stratosphere and tropopause region. J. Geophys. Res. 112, 2006JD007297 (2007).

    Article  Google Scholar 

  27. Li, Y. et al. Enhanced radiative cooling by large aerosol particles from pyrocumulonimbus. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-5348977/v1 (2024).

  28. Sayres, D. S. et al. Using the NAMA as a natural integrator to quantify the convective contribution to lower stratospheric water vapor over North America. J. Geophys. Res. Atmos. 129, e2024JD041641 (2024).

    Article  Google Scholar 

  29. Baldwin, M. P. et al. 100 Years of progress in understanding the stratosphere and mesosphere. Meteorol. Monogr. 59, 27.1–27.62 (2019).

    Article  Google Scholar 

  30. Solomon, D. L., Bowman, K. P. & Homeyer, C. R. Tropopause-penetrating convection from three-dimensional gridded NEXRAD data. J. Appl. Meteorol. Climatol. 55, 465–478 (2016).

    Article  Google Scholar 

  31. Zahn, A., Christner, E., Van Velthoven, P. F. J., Rauthe-Schöch, A. & Brenninkmeijer, C. A. M. Processes controlling water vapor in the upper troposphere/lowermost stratosphere: an analysis of 8 years of monthly measurements by the IAGOS-CARIBIC observatory. J. Geophys. Res. Atmos. 119, 11505–11525 (2014).

    Article  CAS  Google Scholar 

  32. Baars, H. et al. The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET. Atmos. Chem. Phys. 19, 15183–15198 (2019).

    Article  CAS  Google Scholar 

  33. Solomon, S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37, 275–316 (1999).

    Article  CAS  Google Scholar 

  34. Stone, K. et al. Two-years of stratospheric chemistry perturbations from the 2019–2020 Australian wildfire smoke. Atmos. Chem. Phys. 25, 7683–7697 (2025).

    Article  CAS  Google Scholar 

  35. Guan, J. et al. Using the stratosphere to understand long-term organic aerosol photolysis. Preprint at ESS Open Archive https://doi.org/10.22541/essoar.174585008.87516680/v1 (2025).

  36. Reid, J. S., Koppmann, R., Eck, T. F. & Eleuterio, D. P. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 5, 799–825 (2005).

    Article  CAS  Google Scholar 

  37. McClure, C. D., Lim, C. Y., Hagan, D. H., Kroll, J. H. & Cappa, C. D. Biomass-burning-derived particles from a wide variety of fuels – Part 1: Properties of primary particles. Atmos. Chem. Phys. 20, 1531–1547 (2020).

    Article  CAS  Google Scholar 

  38. Knopf, D. A., Alpert, P. A. & Wang, B. The role of organic aerosol in atmospheric ice nucleation: a review. ACS Earth Space Chem. 2, 168–202 (2018).

    Article  CAS  Google Scholar 

  39. Murray, B. J. et al. Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci. 3, 233–237 (2010).

    Article  CAS  Google Scholar 

  40. Murphy, D. M. et al. Metals from spacecraft reentry in stratospheric aerosol particles. Proc. Natl Acad. Sci. USA 120, e2313374120 (2023).

    Article  CAS  Google Scholar 

  41. Murray, B. J., Mangan, T. P., Määttänen, A. & Plane, J. M. C. Ephemeral ice clouds in the upper mesosphere of Venus. J. Geophys. Res. Planets 128, e2023JE007974 (2023).

    Article  Google Scholar 

  42. Haywood, J. M. & Shine, K. P. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. Lett. 22, 603–606 (1995).

    Article  CAS  Google Scholar 

  43. Li, Y., Dykema, J., Deshler, T. & Keutsch, F. Composition dependence of stratospheric aerosol shortwave radiative forcing in northern midlatitudes. Geophys. Res. Lett. 48, e2021GL094427 (2021).

    Article  Google Scholar 

  44. Liu, N., Liu, C. & Hayden, L. Climatology and detection of overshooting convection from 4 years of GPM precipitation radar and passive microwave observations. J. Geophys. Res. Atmos. 125, e2019JD032003 (2020).

    Article  Google Scholar 

  45. Visioni, D. et al. G6-1.5K-SAI: a new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies. Geosci. Model Dev. 17, 2583–2596 (2024).

    Article  Google Scholar 

  46. Murphy, D. M. et al. Particle generation and resuspension in aircraft inlets when flying in clouds. Aerosol Sci. Technol. 38, 401–409 (2004).

    Article  Google Scholar 

  47. Froyd, K. D. et al. A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry. Atmos. Meas. Tech. 12, 6209–6239 (2019).

    Article  Google Scholar 

  48. Li, Y. et al. In situ measurements of perturbations to stratospheric aerosol and modeled ozone and radiative impacts following the 2021 La Soufrière eruption. Atmos. Chem. Phys. 23, 15351–15364 (2023).

    Article  CAS  Google Scholar 

  49. Signorell, R. & Reid, J. P. (eds) in Fundamentals and Applications in Aerosol Spectroscopy 438–481 (CRC Press, 2010); https://doi.org/10.1201/b10417-21

  50. Sargent, M. R. et al. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere. Rev. Sci. Instrum. 84, 074102 (2013).

    Article  CAS  Google Scholar 

  51. Pittman, J. V. et al. Aircraft observations of biomass burning pollutants in the equatorial lower stratosphere over the tropical western Pacific during boreal winter. Atmos. Chem. Phys. 25, 7543–7562 (2025).

    Article  CAS  Google Scholar 

  52. Bowman, K. P. et al. The Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) Project. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-24-0177.1 (2025).

  53. Thomson, D. S., Schein, M. E. & Murphy, D. M. Particle analysis by laser mass spectrometry WB-57F instrument overview. Aerosol Sci. Technol. 33, 153–169 (2000).

    Article  CAS  Google Scholar 

  54. Gao, R. S. et al. A light-weight, high-sensitivity particle spectrometer for PM2.5 aerosol measurements. Aerosol Sci. Technol. 50, 88–99 (2016).

    Article  CAS  Google Scholar 

  55. Tomlin, J. M. et al. Chemical composition and morphological analysis of atmospheric particles from an intensive bonfire burning festival. Environ. Sci. Atmos. https://doi.org/10.1039/D2EA00037G (2022).

  56. Tomlin, J. M. et al. Chemical imaging of fine mode atmospheric particles collected from a research aircraft over agricultural fields. ACS Earth Space Chem. 4, 2171–2184 (2020).

    Article  CAS  Google Scholar 

  57. Tomlin, J. M. et al. Impact of dry intrusion events on the composition and mixing state of particles during the winter Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA). Atmos. Chem. Phys. 21, 18123–18146 (2021).

    Article  CAS  Google Scholar 

  58. Fraund, M. et al. Quantitative capabilities of STXM to measure spatially resolved organic volume fractions of mixed organic/inorganic particles. Atmos. Meas. Tech. 12, 1619–1633 (2019).

    Article  CAS  Google Scholar 

  59. Fraund, M. et al. Elemental mixing state of aerosol particles collected in central Amazonia during GoAmazon2014/15. Atmosphere 8, 173 (2017).

    Article  Google Scholar 

  60. Laskin, A. et al. A new approach to determining gas-particle reaction probabilities and application to the heterogeneous reaction of deliquesced sodium chloride particles with gas-phase hydroxyl radicals. J. Phys. Chem. A 110, 10619–10627 (2006).

    Article  CAS  Google Scholar 

  61. Moffet, R. C., Henn, T., Laskin, A. & Gilles, M. K. Automated chemical analysis of internally mixed aerosol particles using X-ray spectromicroscopy at the carbon K-edge. Anal. Chem. 82, 7906–7914 (2010).

    Article  CAS  Google Scholar 

  62. Moffet, R. C. et al. Morphology and mixing of black carbon particles collected in central California during the CARES field study. Atmos. Chem. Phys. 16, 14515–14525 (2016).

    Article  CAS  Google Scholar 

  63. O’Brien, R. E. et al. Chemical imaging of ambient aerosol particles: observational constraints on mixing state parameterization. J. Geophys. Res. Atmos. 120, 9591–9605 (2015).

    Article  Google Scholar 

  64. Jimenez, J. L. et al. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (2009).

    Article  CAS  Google Scholar 

  65. Rivera-Adorno, F. A. et al. Estimating viscosity of individual substrate-deposited particles from measurements of their height-to-width ratios. Aerosol Sci. Technol. 58, 401–410 (2023).

    Article  Google Scholar 

  66. Gordon, I. E. et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 277, 107949 (2022).

    Article  CAS  Google Scholar 

  67. Scott, S. G., Bui, T. P., Chan, K. R. & Bowen, S. W. The meteorological measurement system on the NASA ER-2 aircraft. J. Atmos. Ocean. Technol. 7, 525–540 (1990).

    Article  Google Scholar 

  68. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteor. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  69. Cooney, J. W., Bowman, K. P., Homeyer, C. R. & Fenske, T. M. Ten year analysis of tropopause-overshooting convection using GridRad data. J. Geophys. Res. Atmos. 123, 329–343 (2018).

    Article  Google Scholar 

  70. Griffin, S. M., Bedka, K. M. & Velden, C. S. A method for calculating the height of overshooting convective cloud tops using satellite-based IR imager and CloudSat cloud profiling radar observations. J. Appl. Meteorol. Climatol. 55, 479–491 (2016).

    Article  Google Scholar 

  71. Homeyer, C. R. et al. Extreme altitudes of stratospheric hydration by midlatitude convection observed during the DCOTSS field campaign. Geophys. Res. Lett. 50, e2023GL104914 (2023).

    Article  Google Scholar 

  72. Homeyer, C. R. et al. Stratospheric hydration processes in tropopause-overshooting convection revealed by tracer-tracer correlations from the DCOTSS field campaign. J. Geophys. Res. Atmos. 129, e2024JD041340 (2024).

    Article  Google Scholar 

  73. Homeyer, C. Dynamics and chemistry of the summer stratosphere airborne data products. NASA Langley Atmospheric Science Data Center Distributed Active Archive Center https://doi.org/10.5067/ASDC/DCOTSS-AIRCRAFT-DATA_1 (2022).

Download references

Acknowledgements

The DCOTSS mission and subsequent analyses were supported by NASA under grants nos. 80NSSC19K1058 (A.L., D.J.C., D.M.M., F.A.R.-A., G.P.S., J.L.J., M.F., T.E.O., R.C.M., S.A.L.S. and X.S.), 80NSSC19K0326 (F.N.K., J.A.D., J.B.S., J.V.P. and Y.L.), 80NSSC19K0341 (K.P.B.) and 80NSSC19K0347 (C.R.H.). We thank the DCOTSS flight and all the science teams. Special thanks go to the NASA Earth Science Project Office and ER-2 flight and ground crews for their assistance and support. We also thank K. D. Froyd, D. S. Thomson, K. Slovacek, M. Lawler and M. Abou-Ghanem for supporting the development of PALMS-NG. We thank E. Ray for discussions on the two-step process of convective overshoot.

Author information

Authors and Affiliations

Authors

Contributions

X.S. analysed data, produced tables and figures, and was the lead writer of the paper. D.J.C. assisted with data interpretation and preparation of the paper. J.L.J., X.S. and D.J.C. collected data. G.P.S. and D.M.M. had important roles in PALMS-NG development. Y.L., J.A.D. and F.N.K. provided DPOPS results, designed the mini-MOUDI sampling methods and collected filter samples, and helped with discussions on climate impact. S.A.L.S., F.A.R.-A., T.E.O., M.F., R.C.M. and A.L. provided STXM/NEXAFS results, and helped with the discussion on stratospheric ozone impact. J.V.P. provided HUPCRS data and discussions on the tropical origin of the air. J.B.S. was the instrument-aircraft lead and provided water vapour results. C.R.H. was the science investigation manager and data manager for DCOTSS and provided feature analysis results. K.P.B. was the principal investigator of the DCOTSS mission and provided general comments on this paper. All authors contributed to the final text.

Corresponding author

Correspondence to X. Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Jianmin Chen and the other, anonymous, reviewers for their contribution to the peer review of this work. Primary Handling Editors: Camilla Brunello, Xujia Jiang and Carolina Ortiz Guerrero, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Background, Notes 1–7, Figs. 1–5 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Jacquot, J.L., Li, Y. et al. Stratospheric aerosol perturbation by tropospheric biomass burning and deep convection. Nat. Geosci. (2025). https://doi.org/10.1038/s41561-025-01821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41561-025-01821-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing