Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconsidering evidence of moral contagion in online social networks

Abstract

The ubiquity of social media use and the digital data traces it produces has triggered a potential methodological shift in the psychological sciences away from traditional, laboratory-based experimentation. The hope is that, by using computational social science methods to analyse large-scale observational data from social media, human behaviour can be studied with greater statistical power and ecological validity. However, current standards of null hypothesis significance testing and correlational statistics seem ill-suited to markedly noisy, high-dimensional social media datasets. We explore this point by probing the moral contagion phenomenon, whereby the use of moral-emotional language increases the probability of message spread. Through out-of-sample prediction, model comparisons and specification curve analyses, we find that the moral contagion model performs no better than an implausible XYZ contagion model. This highlights the risks of using purely correlational evidence from large observational datasets and sounds a cautionary note for psychology’s merge with big data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Qualitative results of SCA.
Fig. 2: Specification curves for moral contagion and XYZ contagion effects.

Similar content being viewed by others

Data availability

The data files analysed in this study are publicly available. For the COVID-19 and #MuellerReport corpora, which were specifically collected for this study, the tweet IDs have been made available on OSF, but not the tweet text due to restrictions set by Twitter. To access the pre-existing corpora, see refs. 19,20,21,22, or follow the links from the OSF project page directing to the original hosting sites (https://osf.io/4zjk6/).

Code availability

All scripts used for the analyses presented in this article are available on the OSF project page (https://osf.io/4zjk6/).

References

  1. Tufekci, Z. Twitter and Tear Gas: The Power and Fragility of Networked Protest (Yale Univ. Press, 2017).

  2. Sunstein, C. R. #Republic: Divided Democracy in the Age of Social Media (Princeton Univ. Press, 2018).

  3. Moore, M. Democracy Hacked: Political Turmoil and Information Warfare in the Digital Age (Oneworld, 2019).

  4. Lazer, D. et al. Computational social science. Science 323, 721–723 (2009).

    Article  CAS  Google Scholar 

  5. Giles, J. Making the links. Nature 488, 448–450 (2012).

    Article  CAS  Google Scholar 

  6. Conte, R. et al. Manifesto of computational social science. Eur. Phys. J. Spec. Top. 214, 325–346 (2012).

    Article  Google Scholar 

  7. Edelmann, A., Wolff, T., Montagne, D. & Bail, C. A. Computational social science and sociology. Annu. Rev. Sociol. 46, 61–81 (2020).

    Article  Google Scholar 

  8. Brady, W. J., Wills, J. A., Jost, J. T., Tucker, J. A. & Van Bavel, J. J. Emotion shapes the diffusion of moralized content in social networks. Proc. Natl Acad. Sci. USA 114, 7313–7318 (2017).

    Article  CAS  Google Scholar 

  9. Crockett, M. J. Moral outrage in the digital age. Nat. Hum. Behav. 1, 769–771 (2017).

    Article  CAS  Google Scholar 

  10. Ben-Nun Bloom, P. & Levitan, L. C. We’re closer than I thought: social network heterogeneity, morality, and political persuasion. Polit. Psychol. 32, 643–665 (2011).

    Article  Google Scholar 

  11. De Choudhury, M., Counts, S. & Horvitz, E. in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 3267–3276 (ACM, 2013).

  12. Tumasjan, A., Sprenger, T. O., Sander, P. G. & Welpe, I. M. in Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media 178–185 (AAAI, 2010).

  13. Garcia, D. & Rimé, B. Collective emotions and social resilience in the digital traces after a terrorist attack. Psychol. Sci. 30, 617–628 (2019).

    Article  Google Scholar 

  14. Salganik, M. Bit by Bit: Social Research in the Digital Age (Princeton Univ. Press, 2017).

  15. Tufekci, Z. in Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media 505–514 (AAAI, 2014).

  16. Ruths, D. & Pfeffer, J. Social media for large studies of behavior. Science 346, 1063–1064 (2014).

    Article  CAS  Google Scholar 

  17. Simmons, J. P., Nelson, L. D. & Simonsohn, U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).

    Article  Google Scholar 

  18. Hodas, N. O. & Lerman, K. The simple rules of social contagion. Sci. Rep. 4, 4343 (2014).

    Article  Google Scholar 

  19. Turner, A. 390,000 #MeToo Tweets. data.world (2018); https://data.world/balexturner/390-000-metoo-tweets

  20. Adhokshaja, P. #Inauguration and #WomensMarch. Kaggle (2017); https://www.kaggle.com/adhok93/inauguration-and-womensmarch-tweets

  21. Parker, C. Brexit Tweets from the morning of its announcement. Mendeley Data (2017); https://data.mendeley.com/datasets/x9wkrghz23/2

  22. Amador, J., Oehmichen, A. & Molina-Solana, M. Fakenews on 2016 US elections viral tweets (November 2016 – March 2017). Zenodo (2017); https://zenodo.org/record/1048826#.X9s59C2l10s

  23. Shalizi, C. R. & Thomas, A. C. Homophily and contagion are generically confounded in observational social network studies. Sociol. Methods Res. 40, 211–239 (2011).

    Article  Google Scholar 

  24. Aral, S., Muchnik, L. & Sundararajan, A. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Natl Acad. Sci. U. S. A. 106, 21544–21549 (2009).

    Article  CAS  Google Scholar 

  25. Hilbig, B. E. Reconsidering ‘evidence’ for fast-and-frugal heuristics. Psychon. Bull. Rev. 17, 923–930 (2010).

    Article  Google Scholar 

  26. Suh, B., Hong, L., Pirolli, P. & Chi, E. H. in 2010 IEEE Second International Conference on Social Computing 177–184 (IEEE, 2010).

  27. Lazer, D. M. J. et al. The science of fake news. Science 359, 1094–1096 (2018).

    Article  CAS  Google Scholar 

  28. Kollanyi, B., Howard, P. N. & Woolley, S. C. Bots and automation over Twitter during the U.S. election. Information Geographies http://geography.oii.ox.ac.uk/wp-content/uploads/sites/89/2016/11/Data-Memo-US-Election.pdf (Univ. Oxford, 2016).

  29. Stieglitz, S. & Dang-Xuan, L. Emotions and information diffusion in social media—sentiment of microblogs and sharing behavior. J. Manag. Inf. Syst. 29, 217–248 (2013).

    Article  Google Scholar 

  30. Ferrara, E. & Yang, Z. Quantifying the effect of sentiment on information diffusion in social media. PeerJ Comput. Sci. 1, e26 (2015).

    Article  Google Scholar 

  31. Simonsohn, U., Simmons, J. P. & Nelson, L. D. Specification curve analysis. Nat. Hum. Behav. 4, 1208–1214 (2020).

    Article  Google Scholar 

  32. Gelman, A. & Loken, E. The statistical crisis in science. Am. Sci. 102, 460–466 (2014).

    Article  Google Scholar 

  33. Steegen, S., Tuerlinckx, F., Gelman, A. & Vanpaemel, W. Increasing transparency through a multiverse analysis. Perspect. Psychol. Sci. 11, 702–712 (2016).

    Article  Google Scholar 

  34. Brady, W. J., Gantman, A. P. & Van Bavel, J. J. Attentional capture helps explain why moral and emotional content go viral. J. Exp. Psychol. Gen. 149, 746–756 (2020).

    Article  Google Scholar 

  35. Rohrer, J. M. Thinking clearly about correlations and causation: graphical causal models for observational data. Adv. Methods Pract. Psychol. Sci. 1, 27–42 (2018).

    Article  Google Scholar 

  36. Mooijman, M., Hoover, J., Lin, Y., Ji, H. & Dehghani, M. Moralization in social networks and the emergence of violence during protests. Nat. Hum. Behav. 2, 389–396 (2018).

    Article  Google Scholar 

  37. Dehghani, M. et al. Purity homophily in social networks. J. Exp. Psychol. Gen. 145, 366–375 (2016).

    Article  Google Scholar 

  38. Westfall, J. & Yarkoni, T. Statistically controlling for confounding constructs is harder than you think. PLoS ONE 11, e0152719 (2016).

    Article  Google Scholar 

  39. Denny, M. & Spirling, A. Text preprocessing for unsupervised learning: why it matters, when it misleads, and what to do about it. Polit. Anal. 26, 168–189 (2018).

    Article  Google Scholar 

  40. Hoover, J. et al. Moral foundations Twitter corpus: a collection of 35k tweets annotated for moral sentiment. Soc. Psychol. Personal. Sci. 11, 1057–1071 (2019).

    Article  Google Scholar 

  41. Cohen-Cole, E. & Fletcher, J. M. Detecting implausible social network effects in acne, height, and headaches: longitudinal analysis. Br. Med. J. 337, a2533–a2533 (2008).

    Article  Google Scholar 

  42. Kearney, M. W. rtweet: Collecting and analyzing Twitter data. J. Open Source Soft. 4, 1829 (2019).

    Article  Google Scholar 

  43. Hilbe, J. M. Negative Binomial Regression (Cambridge Univ. Press, 2011).

  44. Wagenmakers, E.-J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).

    Article  Google Scholar 

  45. Masur, P. K. & Sharkow, M. specr: Statistical functions for conducting specification curve analyses (version 0.2.1) (2019); https://CRAN.R-project.org/package=specr

Download references

Acknowledgements

The authors received no specific funding for this work and thank the Causal Cognition Lab at University College London for their helpful feedback on this work.

Author information

Authors and Affiliations

Authors

Contributions

J.W.B. and U.H. designed the research. J.W.B. and N.C. analysed the data. J.W.B wrote the paper, and all authors contributed to revisions.

Corresponding author

Correspondence to Jason W. Burton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Morteza Dehghani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. The editors also thank William Brady and Jay Van Bavel for providing signed comments.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Methods, Supplementary Results, Supplementary Tables 1–3, Supplementary Figs. 1–9 and Supplementary References.

Reporting summary

Peer review information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burton, J.W., Cruz, N. & Hahn, U. Reconsidering evidence of moral contagion in online social networks. Nat Hum Behav 5, 1629–1635 (2021). https://doi.org/10.1038/s41562-021-01133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-021-01133-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing