Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brain-wide functional connectivity artifactually inflates throughout functional magnetic resonance imaging scans

Abstract

Functional magnetic resonance imaging (fMRI) is a central tool for investigating human brain function, organization and disease. Here, we show that fMRI-based estimates of functional brain connectivity artifactually inflate at spatially heterogeneous rates during resting-state and task-based scans. This produces false positive connection strength changes and spatial distortion of brain connectivity maps. We demonstrate that this artefact is driven by temporal inflation of the non-neuronal, systemic low-frequency oscillation (sLFO) blood flow signal during fMRI scanning and is not addressed by standard denoising procedures. We provide evidence that sLFO inflation reflects perturbations in cerebral blood flow by respiration and heart rate changes that accompany diminishing arousal during scanning, although the mechanisms of this pathway are uncertain. Finally, we show that adding a specialized sLFO denoising procedure to fMRI processing pipelines mitigates the artifactual inflation of functional connectivity, enhancing the validity and within-scan reliability of fMRI findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evidence for the presence of brain-wide, spatially heterogeneous FC inflation over time in the MIC dataset.
Fig. 2: Replication of the temporal and spatial features of FC inflation in the HCP dataset.
Fig. 3: Standard preprocessing and denoising do not address FC inflation.
Fig. 4: GMS variance inflates over time during and across scanning acquisitions.
Fig. 5: Temporal and spatial properties of the sLFO signal in the HCP REST1 data.
Fig. 6: The impact of RIPTiDe denoising on FC inflation.
Fig. 7: Comparing denoising pipelines for addressing FC inflation.
Fig. 8: Relationships between sLFO inflation and arousal-related physiological changes.

Similar content being viewed by others

Data availability

The HCP dataset is publicly available on the open access Connectome database (https://db.humanconnectome.org/app/template/Login.vm), which can be accessed after signing a data use agreement. The PSU (https://openneuro.org/datasets/ds003768/versions/1.0.9) and YMRRC (https://openneuro.org/datasets/ds003673/versions/2.0.1) datasets are publicly available on the OpenNeuro repository. The MIC dataset is available upon reasonable request to the corresponding author.

Code availability

The code for assessing the presence of brain-wide FC inflation in an fMRI dataset is publicly available at https://github.com/ckorponay/Connectivity-Inflation/blob/main/FC_Inflation_Evaluator.m. The code and instructions for performing RIPTiDe denoising using the rapidtide package are publicly available at https://rapidtide.readthedocs.io/en/latest/usage_rapidtide.html#removing-low-frequency-physiological-noise-from-fmri-data.

References

  1. Murphy, K., Birn, R. M. & Bandettini, P. A. Resting-state fMRI confounds and cleanup. Neuroimage 80, 349–359 (2013).

    Article  PubMed  Google Scholar 

  2. Glover, G. H., Li, T. Q. & Ress, D. Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 44, 162–167 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Tong, Y., Hocke, L. M. & Frederick, B. B. Low frequency systemic hemodynamic ‘noise’ in resting state BOLD fMRI: characteristics, causes, implications, mitigation strategies, and applications. Front. Neurosci. 13, 787 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Power, J. D., Schlaggar, B. L. & Petersen, S. E. Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage 105, 536–551 (2015).

    Article  PubMed  Google Scholar 

  5. Johnstone, T. et al. Motion correction and the use of motion covariates in multiple‐subject fMRI analysis. Hum. Brain Mapp. 27, 779–788 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Janes, A. C., Peechatka, A. L., Frederick, B. B. & Kaiser, R. H. Dynamic functioning of transient resting‐state coactivation networks in the Human Connectome Project. Hum. Brain Mapp. 41, 373–387 (2020).

    Article  PubMed  Google Scholar 

  7. Salimi-Khorshidi, G. et al. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468 (2014).

    Article  PubMed  Google Scholar 

  8. Gu, Y., Sainburg, L. E., Han, F. & Liu, X. Simultaneous EEG and functional MRI data during rest and sleep from humans. Data Brief 48, 109059 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bandettini, P. A. Lost in transformation: fMRI power is diminished by unknown variability in methods and people. Aperture Neuro https://doi.org/10.52294/725139d7-0b8a-49dc-a81d-ba2ca64ff6d9 (2022).

  12. Keilholz, S., Pan, W., Billings, J., Nezafati, M. & Shakil, S. Noise and non-neuronal contributions to the BOLD signal. Applications to and insights from animal studies. Neuroimage 154, 267–281 (2017).

  13. Poldrack, R. A. Precision neuroscience: dense sampling of individual brains. Neuron 95, 727–729 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Noble, S., Scheinost, D. & Constable, R. T. A decade of test–retest reliability of functional connectivity: a systematic review and meta-analysis. Neuroimage 203, 116157 (2019).

    Article  PubMed  Google Scholar 

  16. Noble, S., Scheinost, D. & Constable, R. T. A guide to the measurement and interpretation of fMRI test–retest reliability. Curr. Opin. Behav. Sci. 40, 27–32 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Janes, A. C., Krantz, N. L., Nickerson, L. D., Frederick, B. B. & Lukas, S. E. Craving and cue reactivity in nicotine-dependent tobacco smokers is associated with different insula networks. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 76–83 (2020).

    PubMed  Google Scholar 

  18. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    Article  PubMed  Google Scholar 

  19. Glasser, M. F. et al. The Human Connectome Project’s neuroimaging approach. Nat. Neurosci. 19, 1175–1187 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Korponay, C., Stein, E. A. & Ross, T. J. Misconfigured striatal connectivity profiles in smokers. Neuropsychopharmacology 47, 2081–2089 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Faillenot, I., Heckemann, R. A., Frot, M. & Hammers, A. Macroanatomy and 3D probabilistic atlas of the human insula. Neuroimage 150, 88–98 (2017).

    Article  PubMed  Google Scholar 

  22. Choi, E. Y., Yeo, B. T. & Buckner, R. L. The organization of the human striatum estimated by intrinsic functional connectivity. J. Neurophysiol. 108, 2242–2263 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  24. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Article  PubMed  Google Scholar 

  25. Engelmann, J. M. et al. Neural substrates of smoking cue reactivity: a meta-analysis of fMRI studies. Neuroimage 60, 252–262 (2012).

    Article  PubMed  Google Scholar 

  26. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).

    Article  PubMed  Google Scholar 

  27. Murphy, K. & Fox, M. D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 154, 169–173 (2017).

    Article  PubMed  Google Scholar 

  28. Griffanti, L. et al. Hand classification of fMRI ICA noise components. Neuroimage 154, 188–205 (2017).

    Article  PubMed  Google Scholar 

  29. Erdoğan, S. B., Tong, Y., Hocke, L. M., Lindsey, K. P. & deB, F. B. Correcting for blood arrival time in global mean regression enhances functional connectivity analysis of resting state fMRI-BOLD signals. Front. Hum. Neurosci. 10, 311 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aso, T., Urayama, S., Fukuyama, H. & Murai, T. Axial variation of deoxyhemoglobin density as a source of the low-frequency time lag structure in blood oxygenation level-dependent signals. PLoS ONE 14, e0222787 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aso, T., Jiang, G., Urayama, S.-I. & Fukuyama, H. A resilient, non-neuronal source of the spatiotemporal lag structure detected by bold signal-based blood flow tracking. Front. Neurosci. 11, 256 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tong, Y. et al. Evaluating the effects of systemic low frequency oscillations measured in the periphery on the independent component analysis results of resting state networks. Neuroimage 76, 202–215 (2013).

    Article  PubMed  Google Scholar 

  33. Wanger, T. J., Janes, A. C. & Frederick, B. B. Spatial variation of changes in test–retest reliability of functional connectivity after global signal regression: the effect of considering hemodynamic delay. Hum. Brain Mapp. 44, 668–678 (2023).

    Article  PubMed  Google Scholar 

  34. Frederick, B. D., Nickerson, L. D. & Tong, Y. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS). Neuroimage 60, 1913–1923 (2012).

    Article  PubMed  Google Scholar 

  35. Tong, Y. & Frederick, B. D. Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain. Neuroimage 53, 553–564 (2010).

    Article  PubMed  Google Scholar 

  36. Hu, J.-Y. et al. A novel approach for assessing hypoperfusion in stroke using spatial independent component analysis of resting-state fMRI. Hum. Brain Mapp. 42, 5204–5216 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gonzalez-Castillo, J., Fernandez, I. S., Handwerker, D. A. & Bandettini, P. A. Ultra-slow fMRI fluctuations in the fourth ventricle as a marker of drowsiness. Neuroimage 259, 119424 (2022).

  38. Tanrıtanır, A. C. et al. The effect of scan length on the assessment of BOLD delay in ischemic stroke. Front. Neurol. 11, 381 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pinto, J., Bright, M. G., Bulte, D. P. & Figueiredo, P. Cerebrovascular reactivity mapping without gas challenges: a methodological guide. Front. Physiol. 11, 608475 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chi, N.-F. et al. Cerebral motor functional connectivity at the acute stage: an outcome predictor of ischemic stroke. Sci. Rep. 8, 16803 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tagliazucchi, E. & Laufs, H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82, 695–708 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, X. et al. Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. Nat. Commun. 9, 395 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bijsterbosch, J. et al. Investigations into within- and between-subject resting-state amplitude variations. Neuroimage 159, 57–69 (2017).

    Article  PubMed  Google Scholar 

  44. Shinar, Z., Akselrod, S., Dagan, Y. & Baharav, A. Autonomic changes during wake–sleep transition: a heart rate variability based approach. Auton. Neurosci. 130, 17–27 (2006).

    Article  PubMed  Google Scholar 

  45. Douglas, N. J., White, D. P., Pickett, C. K., Weil, J. V. & Zwillich, C. W. Respiration during sleep in normal man. Thorax 37, 840–844 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, K. et al. Arousal impacts distributed hubs modulating the integration of brain functional connectivity. Neuroimage 258, 119364 (2022).

    Article  PubMed  Google Scholar 

  47. Joshi, S. & Gold, J. I. Pupil size as a window on neural substrates of cognition. Trends Cogn. Sci. 24, 466–480 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ogoh, S. Interaction between the respiratory system and cerebral blood flow regulation. J. Appl. Physiol. 127, 1197–1205 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Allen, B., Jennings, J. R., Gianaros, P. J., Thayer, J. F. & Manuck, S. B. Resting high‐frequency heart rate variability is related to resting brain perfusion. Psychophysiology 52, 277–287 (2015).

    Article  PubMed  Google Scholar 

  50. Tong, Y., Hocke, L. M., Fan, X., Janes, A. C. & Frederick, B. D. Can apparent resting state connectivity arise from systemic fluctuations? Front. Hum. Neurosci. 9, 285 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Orban, C., Kong, R., Li, J., Chee, M. W. L. & Yeo, B. T. Time of day is associated with paradoxical reductions in global signal fluctuation and functional connectivity. PLoS Biol. 18, e3000602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Richter, S., Marsalek, K., Glatz, C. & Gundel, A. Task‐dependent differences in subjective fatigue scores. J. Sleep Res. 14, 393–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Baumann, H., Baumann, R., Gurk, C. & Wolter, F. Electrophysiological studies of central nervous performance during monotony. Electroencephalogr. Clin. Neurophysiol. 24, 259–273 (1968).

    Article  CAS  PubMed  Google Scholar 

  54. Fukunaga, M. et al. Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magn. Reson. Imaging 24, 979–992 (2006).

    Article  PubMed  Google Scholar 

  55. Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366, 628–631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Duyn, J. H., Ozbay, P. S., Chang, C. & Picchioni, D. Physiological changes in sleep that affect fMRI inference. Curr. Opin. Behav. Sci. 33, 42–50 (2020).

    Article  PubMed  Google Scholar 

  57. Aso, T., Uematsu, A. & Hayashi, T. Reliability of BOLD perfusion lag mapping depends on global signal amplitude. In Proc. Organization for Human Brain Mapping (OHBM) 2023 Annual Meeting Poster 528 (2023).

  58. Bolt, T. et al. Widespread neural and autonomic system synchrony across the brain–body axis. Preprint at bioRxiv https://doi.org/10.1101/2023.01.19.524818 (2024).

  59. Lynch, C. J. et al. Prevalent and sex-biased breathing patterns modify functional connectivity MRI in young adults. Nat. Comm. 11, 5290 (2020).

  60. Bennett, H. C. & Kim, Y. Advances in studying whole mouse brain vasculature using high-resolution 3D light microscopy imaging. Neurophotonics 9, 021902 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Raz, A. et al. Ecological nuances in functional magnetic resonance imaging (fMRI): psychological stressors, posture, and hydrostatics. Neuroimage 25, 1–7 (2005).

    Article  PubMed  Google Scholar 

  62. Golestani, A. M., Kwinta, J. B., Strother, S. C., Khatamian, Y. B. & Chen, J. J. The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: the influence of basal carbon dioxide. Neuroimage 132, 301–313 (2016).

    Article  PubMed  Google Scholar 

  63. Vijayakrishnan Nair, V. et al. Human CSF movement influenced by vascular low frequency oscillations and respiration. Front. Physiol. 13, 940140 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fagerström, K. O. Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addict. Behav. 3, 235–241 (1978).

    Article  PubMed  Google Scholar 

  65. Frederick, B. B., Salo, T., Drucker, D. M., Stout, J. N. rapidtide [Computer Software] (2016-2024). GitHub https://github.com/bbfrederick/rapidtide (2016).

  66. Birn, R. M. et al. The influence of physiological noise correction on test–retest reliability of resting-state functional connectivity. Brain Connect. 4, 511–522 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tong, Y., Yao, J., Chen, J. J. & Frederick, B. D. The resting-state fMRI arterial signal predicts differential blood transit time through the brain. J. Cereb. Blood Flow Metab. 39, 1148–1160 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant no. 5R01DA039135-06 to A.C.J., the Intramural Research Program of the National Institutes of Health, the National Institute on Drug Abuse (to A.C.J.), and grant nos 1RF1MH130637-01 and 1R21AG070383-01 to B.B.F. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.K., A.C.J. and B.B.F. were responsible for study conceptualization, data collection, curation and analysis, and for writing, reviewing and editing the manuscript.

Corresponding author

Correspondence to Cole Korponay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Deborah Small, Wesley Vieira da Silva and the other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korponay, C., Janes, A.C. & Frederick, B.B. Brain-wide functional connectivity artifactually inflates throughout functional magnetic resonance imaging scans. Nat Hum Behav 8, 1568–1580 (2024). https://doi.org/10.1038/s41562-024-01908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-024-01908-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing