Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effectiveness of ex ante honesty oaths in reducing dishonesty depends on content

Abstract

Dishonest behaviours such as tax evasion impose significant societal costs. Ex ante honesty oaths—commitments to honesty before action—have been proposed as interventions to counteract dishonest behaviour, but the heterogeneity in findings across operationalizations calls their effectiveness into question. We tested 21 honesty oaths (including a baseline oath)—proposed, evaluated and selected by 44 expert researchers—and a no-oath condition in a megastudy involving 21,506 UK and US participants from Prolific.com who played an incentivized tax evasion game online. Of the 21 interventions, 10 significantly improved tax compliance by 4.5 to 8.5 percentage points, with the most successful nearly halving tax evasion. Limited evidence for moderators was found. Experts and laypeople failed to predict the most effective interventions, though experts’ predictions were more accurate. In conclusion, honesty oaths were effective in curbing dishonesty, but their effectiveness varied depending on content. These findings can help design impactful interventions to curb dishonesty.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study objectives.
Fig. 2: Experimental design and tax evasion game.
Fig. 3: Average marginal effects of honesty oath interventions.
Fig. 4: Average marginal effects depending on the type of intervention focus and dishonesty justification.
Fig. 5: Recommendations for effective ex ante honesty oath interventions.

Similar content being viewed by others

Data availability

The datasets generated by the survey research and/or analysed during the current study are available via Zenodo at https://doi.org/10.5281/zenodo.13329833 (ref. 80) and at https://osf.io/t3sm4/ (pilot studies)81.

Code availability

All code used to generate the main and supplementary analyses is available in the osf.io repository at https://osf.io/t3sm4/ and via Zenodo at https://doi.org/10.5281/zenodo.13329833 (ref. 80). We used R (version 4.2.1; ref. 82) and the R packages broom (version 1.0.4; ref. 83), dplyr (version 1.1.1; ref. 84), ggplot2 (version 3.4.4; ref. 85), ggpubr (version 0.4.0; ref. 86), glmmTMB (version 1.1.7; ref. 87), janitor (version 2.1.0; ref. 88), lme4 (version 1.1-32; ref. 89), marginaleffects (version 0.14.0; ref. 90), meta.shrinkage (version 0.1.4; ref. 91), papaja (version 0.1.1; ref. 92), purrr (version 1.0.1; ref. 93), psych (version 2.2.5; ref. 94), qualtRics (version 3.1.7; ref. 95), sjPlot (version 2.8.14; ref. 96), stringr (version 1.5.0; ref. 97), tidyverse (version 1.3.2; ref. 98), TOSTER (version 0.8.0; ref. 38) and mice (version 3.16.0; ref. 99) for our analyses.

References

  1. Sommerstein, A. H. & Torrance, I. C. Oaths and Swearing in Ancient Greece (De Gruyter, 2014); https://doi.org/10.1515/9783110227369

  2. Ostrom, E. Collective action and the evolution of social norms. J. Econ. Perspect. 14, 137–158 (2000).

    Article  Google Scholar 

  3. Bruin, B. Pledging integrity: oaths as forms of business ethics management. J. Bus. Ethics 136, 23–42 (2016).

    Article  Google Scholar 

  4. Gächter, S. & Schultz, J. F. Intrinsic honesty and the prevalence of rule violations across societies. Nature 531, 496–499 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abeler, J., Nosenzo, D. & Raymond, C. Preferences for truth-telling. Econometrica 87, 1115–1153 (2019).

    Article  Google Scholar 

  6. Gerlach, P., Teodorescu, K. & Hertwig, R. The truth about lies: a meta-analysis on dishonest behavior. Psychol. Bull. 145, 1–44 (2019).

    Article  PubMed  Google Scholar 

  7. Leib, M., Köbis, N., Soraperra, I., Weisel, O. & Shalvi, S. Collaborative dishonesty: a meta-analytic review. Psychol. Bull. 147, 1241 (2021).

    Article  PubMed  Google Scholar 

  8. Jacobsen, C., Fosgaard, T. R. & Pascual-Ezama, D. Why do we lie? A practical guide to the dishonesty literature. J. Econ. Surv. 32, 357–387 (2018).

    Article  Google Scholar 

  9. Bellé, N. & Cantarelli, P. What causes unethical behavior? A meta-analysis to set an agenda for public administration research. Public Adm. Rev. 77, 327–339 (2017).

    Article  Google Scholar 

  10. Hertwig, R. & Mazar, N. Toward a taxonomy and review of honesty interventions. Curr. Opin. Psychol. 47, 101410 (2022).

    Article  PubMed  Google Scholar 

  11. Zickfeld, J. H. et al. Committed (dis)honesty: a systematic meta-analytic review of the divergent effects of social commitment to individuals or honesty oaths on dishonest behavior. Psychol. Bull. 150, 586–620 (2024).

    Article  PubMed  Google Scholar 

  12. Mazar, N., Amir, O. & Ariely, D. The dishonesty of honest people: a theory of self-concept maintenance. J. Mark. Res. 45, 633–644 (2008).

    Article  Google Scholar 

  13. Barkan, R., Ayal, S. & Ariely, D. Ethical dissonance, justifications, and moral behavior. Curr. Opin. Psychol. 6, 157–161 (2015).

    Article  Google Scholar 

  14. Jacquemet, N., Luchini, S., Malézieux, A. & Shogren, J. F. Who’ll stop lying under oath? Empirical evidence from tax evasion games. Eur. Econ. Rev. 124, 103369 (2020).

    Article  Google Scholar 

  15. Shalvi, S., Gino, F., Barkan, R. & Ayal, S. Self-serving justifications: doing wrong and feeling moral. Curr. Dir. Psychol. Sci. 24, 125–130 (2015).

    Article  Google Scholar 

  16. Koning, L., Junger, M. & van Hoof, J. Digital signatures: a tool to prevent and predict dishonesty? Mind Soc. 19, 257–285 (2020).

    Article  Google Scholar 

  17. Kristal, A. S. et al. Signing at the beginning versus at the end does not decrease dishonesty. Proc. Natl Acad. Sci. USA 117, 7103–7107 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chou, E. Y. What’s in a name? The toll e-signatures take on individual honesty. J. Exp. Soc. Psychol. 61, 84–95 (2015).

    Article  Google Scholar 

  19. Cagala, T., Glogowsky, U., Rincke, J. & Schudy, S. Commitment requests do not affect truth-telling in laboratory and online experiments. Games Econ. Behav. 143, 179–190 (2024).

    Article  Google Scholar 

  20. Cagala, T., Glogowsky, U. & Rincke, J. Detecting and preventing cheating in exams: evidence from a field experiment. J. Hum. Resour. 59, 210–241 (2024).

    Article  Google Scholar 

  21. Kettle, S., Hernandez, M., Sanders, M., Hauser, O. & Ruda, S. Failure to CAPTCHA attention: null results from an honesty priming experiment in Guatemala. Behav. Sci. 7, 28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Koessler, A.-K., Torgler, B., Feld, L. P. & Frey, B. S. Commitment to pay taxes: results from field and laboratory experiments. Eur. Econ. Rev. 115, 78–98 (2019).

    Article  Google Scholar 

  23. Martuza, J. B., Skard, S. R., Løvlie, L. & Thorbjørnsen, H. Do honesty-nudges really work? A large-scale field experiment in an insurance context. J. Consum. Behav. 21, 927–951 (2022).

    Article  Google Scholar 

  24. Shu, L. L., Mazar, N., Gino, F., Ariely, D. & Bazerman, M. H. Signing at the beginning makes ethics salient and decreases dishonest self-reports in comparison to signing at the end. Proc. Natl Acad. Sci. USA 109, 15197–15200 (2012); retraction 118, e2115397118 (2021).

  25. Peer, E., Mazar, N., Feldman, Y. & Ariely, D. How pledges reduce dishonesty: the role of involvement and identification. J. Exp. Soc. Psychol. 113, 104614 (2024).

    Article  Google Scholar 

  26. Jacquemet, N., Luchini, S., Rosaz, J. & Shogren, J. F. Truth-telling under oath. Manag. Sci. 65, 426–438 (2018).

    Article  Google Scholar 

  27. Zickfeld, J. H., Ścigala, K. A., Weiss, A., Michael, J. & Mitkidis, P. Commitment to honesty oaths decreases dishonesty, but commitment to another individual does not affect dishonesty. Commun. Psychol. 1, 27 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schild, C., Heck, D. W., Scigala, K. A. & Zettler, I. Revisiting REVISE: (re)testing unique and combined effects of reminding, visibility, and self-engagement manipulations on cheating behavior. J. Econ. Psychol. 75, 102161 (2020).

    Article  Google Scholar 

  29. Skowronek, S. E. DENIAL: a conceptual framework to improve honesty nudges. Curr. Opin. Psychol. https://doi.org/10.1016/j.copsyc.2022.101456 (2022).

  30. Le Maux, B. & Necker, S. Honesty nudges: effect varies with content but not with timing. J. Econ. Behav. Organ. 207, 433–456 (2023).

    Article  Google Scholar 

  31. Peer, E. & Feldman, Y. Honesty pledges for the behaviorally-based regulation of dishonesty. J. Eur. Public Policy 28, 761–781 (2021).

    Article  Google Scholar 

  32. Duckworth, A. L. & Milkman, K. L. A guide to megastudies. PNAS Nexus 1, pgac214 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Milkman, K. L. et al. Megastudies improve the impact of applied behavioural science. Nature 600, 478–483 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Milkman, K. L. et al. A 680,000-person megastudy of nudges to encourage vaccination in pharmacies. Proc. Natl Acad. Sci. USA 119, e2115126119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Alm, J. & Malézieux, A. 40 years of tax evasion games: a meta-analysis. Exp. Econ. 24, 699–750 (2021).

    Article  Google Scholar 

  36. Alm, J., Bloomquist, K. M. & McKee, M. On the external validity of laboratory tax compliance experiments. Econ. Inq. 53, 1170–1186 (2015).

    Article  Google Scholar 

  37. Bloomquist, K. M. A comparative analysis of reporting compliance behavior in laboratory experiments and random taxpayer audits. In Proc. Annual Conference on Taxation and Minutes of the Annual Meeting of the National Tax Association Vol. 102, 113–122 (National Tax Association, 2009).

  38. Lakens, D., Scheel, A. M. & Isager, P. M. Equivalence testing for psychological research: a tutorial. Adv. Methods Pract. Psychol. Sci. 1, 259–269 (2018).

    Article  Google Scholar 

  39. Schweitzer, M. E. & Hsee, C. K. Stretching the truth: elastic justification and motivated communication of uncertain information. J. Risk Uncertain. 25, 185–201 (2002).

    Article  Google Scholar 

  40. Gollwitzer, P. M. & Sheeran, P. Implementation intentions and goal achievement: a meta-analysis of effects and processes. Adv. Exp. Soc. Psychol. 38, 69–119 (2006).

    Article  Google Scholar 

  41. Mitkidis, P., Sørensen, J., Nielbo, K. L., Andersen, M. & Lienard, P. Collective-goal ascription increases cooperation in humans. PLoS ONE 8, e64776 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mulder, L. B., Jordan, J. & Rink, F. The effect of specific and general rules on ethical decisions. Organ. Behav. Hum. Decis. Process. 126, 115–129 (2015).

    Article  Google Scholar 

  43. Mulder, L. B., Rink, F. & Jordan, J. Constraining temptation: how specific and general rules mitigate the effect of personal gain on unethical behavior. J. Econ. Psychol. 76, 102242 (2020).

    Article  Google Scholar 

  44. Verschuere, B. et al. Registered replication report on Mazar, Amir, and Ariely (2008). Adv. Methods Pract. Psychol. Sci. 1, 299–317 (2018).

    Article  Google Scholar 

  45. Zhao, J., Dong, Z. & Yu, R. Don’t remind me: when explicit and implicit moral reminders enhance dishonesty. J. Exp. Soc. Psychol. 85, 103895 (2019).

    Article  Google Scholar 

  46. Toor, N. S. Comparison of Dishonesty Interventions: A Conceptual Replication Study. MA thesis, Univ. Chicago (2022); https://doi.org/10.6082/uchicago.5110

  47. Jamison, J. C., Mazar, N. & Sen, I. Applying behavioral insights to tax compliance: experimental evidence from Latvia. J. Tax. Adm. 6, 6–32 (2021).

    Google Scholar 

  48. Ayal, S., Celse, J. & Hochman, G. Crafting messages to fight dishonesty: a field investigation of the effects of social norms and watching eye cues on fare evasion. Organ. Behav. Hum. Decis. Process. 166, 9–19 (2021).

    Article  Google Scholar 

  49. Lois, G. & Wessa, M. Honest mistake or perhaps not: the role of descriptive and injunctive norms on the magnitude of dishonesty. J. Behav. Decis. Mak. 34, 20–34 (2021).

    Article  Google Scholar 

  50. Hallsworth, M., List, J. A., Metcalfe, R. D. & Vlaev, I. The behavioralist as tax collector: using natural field experiments to enhance tax compliance. J. Public Econ. 148, 14–31 (2017).

    Article  Google Scholar 

  51. Brudermann, T., Bartel, G., Fenzl, T. & Seebauer, S. Eyes on social norms: a field study on an honor system for newspaper sale. Theory Decis. 79, 285–306 (2015).

    Article  Google Scholar 

  52. Köbis, N. C., Troost, M., Brandt, C. O. & Soraperra, I. Social norms of corruption in the field: social nudges on posters can help to reduce bribery. Behav. Public Policy 6, 597–624 (2022).

    Article  Google Scholar 

  53. Fellner, G., Sausgruber, R. & Traxler, C. Testing enforcement strategies in the field: threat, moral appeal and social information. J. Eur. Econ. Assoc. 11, 634–660 (2013).

    Article  Google Scholar 

  54. Dimant, E., Van Kleef, G. A. & Shalvi, S. Requiem for a nudge: framing effects in nudging honesty. J. Econ. Behav. Organ. 172, 247–266 (2020).

    Article  Google Scholar 

  55. Castro, L. & Scartascini, C. Tax compliance and enforcement in the pampas evidence from a field experiment. J. Econ. Behav. Organ. 116, 65–82 (2015).

    Article  Google Scholar 

  56. Hernandez, M., Jamison, J., Korczyc, E., Mazar, N. & Sormani, R. Applying Behavioral Insights to Improve Tax Collection: Experimental Evidence from Poland Working Paper (World Bank, 2017).

  57. Köbis, N., Starke, C. & Rahwan, I. The promise and perils of using artificial intelligence to fight corruption. Nat. Mach. Intell. 4, 418–424 (2022).

    Article  Google Scholar 

  58. Capraro, V. et al. The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS Nexus 3, pgae191 (2024).

  59. Guzikevits, M. & Choshen-Hillel, S. The optics of lying: how pursuing an honest social image shapes dishonest behavior. Curr. Opin. Psychol. 46, 101384 (2022).

    Article  PubMed  Google Scholar 

  60. Alm, J. & Torgler, B. Culture differences and tax morale in the United States and in Europe. J. Econ. Psychol. 27, 224–246 (2006).

    Article  Google Scholar 

  61. Heck, D. W., Thielmann, I., Moshagen, M. & Hilbig, B. E. Who lies? A large-scale reanalysis linking basic personality traits to unethical decision making. Judgm. Decis. Mak. 13, 356–371 (2018).

    Article  Google Scholar 

  62. Capraro, V. Gender differences in lying in sender–receiver games: a meta-analysis. Judgm. Decis. Mak. 13, 345–355 (2018).

    Article  Google Scholar 

  63. DellaVigna, S. & Pope, D. Predicting experimental results: who knows what? J. Polit. Econ. 126, 2410–2456 (2018).

    Article  Google Scholar 

  64. Götz, F. M., Gosling, S. D. & Rentfrow, P. J. Small effects: the indispensable foundation for a cumulative psychological science. Perspect. Psychol. Sci. 17, 205–215 (2022).

    Article  PubMed  Google Scholar 

  65. Zizzo, D. J. Experimenter demand effects in economic experiments. Exp. Econ. 13, 75–98 (2010).

    Article  Google Scholar 

  66. Jacquemet, N., James, A. G., Luchini, S., Murphy, J. J. & Shogren, J. F. Do truth-telling oaths improve honesty in crowd-working? PLoS ONE 16, e0244958 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Jacquemet, N., Luchini, S., Rosaz, J. & Shogren, J. F. Can we commit future managers to honesty? Front. Psychol. 12, 701627 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jacquemet, N., Joule, R.-V., Luchini, S. & Shogren, J. F. Preference elicitation under oath. J. Environ. Econ. Manag. 65, 110–132 (2013).

    Article  Google Scholar 

  69. Jacquemet, N., James, A., Luchini, S. & Shogren, J. F. Referenda under oath. Environ. Resour. Econ. 67, 479–504 (2017).

    Article  Google Scholar 

  70. Corrigan-Gibbs, H., Gupta, N., Northcutt, C., Cutrell, E. & Thies, W. Deterring cheating in online environments. ACM Trans. Comput. Hum. Interact. 22, 28 (2015).

    Article  Google Scholar 

  71. Uhlmann, E. L. et al. Scientific utopia III: crowdsourcing science. Perspect. Psychol. Sci. 14, 711–733 (2019).

    Article  PubMed  Google Scholar 

  72. Palan, S. & Schitter, C. Prolific.ac—a subject pool for online experiments. J. Behav. Exp. Financ. 17, 22–27 (2018).

    Article  Google Scholar 

  73. Peer, E., Rothschild, D., Gordon, A., Evernden, Z. & Damer, E. Data quality of platforms and panels for online behavioral research. Behav. Res. Methods 54, 1643–1662 (2022).

    Article  PubMed  Google Scholar 

  74. De Vries, R. E. The 24-item brief HEXACO inventory (BHI). J. Res. Pers. 47, 871–880 (2013).

    Article  Google Scholar 

  75. Yamagishi, T. & Yamagishi, M. Trust and commitment in the United States and Japan. Motiv. Emot. 18, 129–166 (1994).

    Article  Google Scholar 

  76. Skowronek, S. About 70% of participants know that the canonical deception paradigms measure dishonesty. Acad. Manag. Proc. https://doi.org/10.5465/AMBPP.2021.107 (2021).

  77. Lakens, D. Sample size justification. Collabra Psychol. 8, 33267 (2022).

    Article  Google Scholar 

  78. Kubinec, R. Ordered beta regression: a parsimonious, well-fitting model for continuous data with lower and upper bounds. Polit. Anal. 31, 519–536 (2023).

    Article  Google Scholar 

  79. Bolker, B. Getting Started with the glmmTMB Package (R Foundation for Statistical Computing, 2016).

  80. Zickfeld, J. MegaOath: datasets. Zenodo https://doi.org/10.5281/zenodo.13329833 (2024).

  81. Zickfeld, J. H. Datasets to ‘Effectiveness of ex-ante honesty oaths in reducing dishonesty depends on content’. Zenodo https://zenodo.org/doi/10.5281/zenodo.10777159 (2024).

  82. R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2022).

  83. Robinson, D., Hayes, A. & Couch, S. broom: Convert statistical objects into tidy tibbles. R package version 1.0.4 https://CRAN.R-project.org/package=broom (2023).

  84. Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. dplyr: A grammar of data manipulation. R package version 1.1.1 https://CRAN.R-project.org/package=dplyr (2023).

  85. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  86. Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0 https://CRAN.R-project.org/package=ggpubr (2020).

  87. Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article  Google Scholar 

  88. Firke, S. janitor: Simple tools for examining and cleaning dirty data. R package version 2.1.0 https://CRAN.R-project.org/package=janitor (2021).

  89. Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

  90. Arel-Bundock, V. marginaleffects: Predictions, comparisons, slopes, marginal means, and hypothesis tests. R package version 0.14.0 https://CRAN.R-project.org/package=marginaleffects (2023).

  91. Taketomi, N. & Emura, T. meta.shrinkage: Meta-analyses for simultaneously estimating individual means. R package version 0.1.4 https://CRAN.R-project.org/package=meta.shrinkage (2023).

  92. Aust, F. & Barth, M. papaja: Prepare reproducible APA journal articles with R Markdown. R package version 0.1.1 https://github.com/crsh/papaja (2022).

  93. Wickham, H. & Henry, L. purrr: Functional programming tools. R package version 1.0.1 https://CRAN.R-project.org/package=purrr (2023).

  94. Revelle, W. psych: Procedures for psychological, psychometric, and personality research. R package version 2.2.5 https://CRAN.R-project.org/package=psych (2022).

  95. Ginn, J., O’Brien, J. & Silge, J. qualtRics: Download ‘qualtrics’ survey data. R package version 3.1.7 https://CRAN.R-project.org/package=qualtRics (2022).

  96. Lüdecke, D. sjPlot: Data visualization for statistics in social science. R package version 2.8.14 https://CRAN.R-project.org/package=sjPlot (2023).

  97. Wickham, H. stringr: Simple, consistent wrappers for common string operations. R package version 1.5.0 https://CRAN.R-project.org/package=stringr (2022).

  98. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  Google Scholar 

  99. van Buuren, S. & Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J. Stat. Softw. https://doi.org/10.18637/jss.v045.i03 (2011).

Download references

Acknowledgements

P.M. was supported by grant no. AUFF-E-2019-9-4 NOVA. Y.F. was supported by ERC grant no. 101054656 (project acronym VCOMP). E.P. and Y.F. were supported by a grant from the Israeli Science Foundation Award No. 385/20. A.Z.C. was supported by grant no. 2018/30/E/HS6/00863 from the National Science Center, Poland. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank P. Nickl for input on visualizations.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J.H.Z. and P.M. Data curation: J.H.Z. Formal analysis: J.H.Z. Funding acquisition: J.M., D.A., I.T., S.H., A.-K.K., S.P. and P.M. Investigation: J.H.Z. Methodology: J.H.Z., K.A.Ś., C.T.E., J.M., M.H.T., G.L., S.A., E.P., E.C., U.G., S. Schudy, Y.F., P.K., N.M., S. Schindler, A.W., D.N., V.C., R.H., R.B., D.A., R.M.-R., I.T., J.B.M., P.G., Š.B., M.B., J.K.W., L.N., S.B., N.J., N.K., S.H., Z.R., A.K., Y.A.N., A.-K.K., M.V., A.Z.C., A.S., S.P. and P.M. Project administration: J.H.Z. Validation: J.H.Z., E.P., J.B.M. and Y.A.N. Visualization: J.H.Z. and Z.R. Writing—original draft: J.H.Z. Writing—review and editing: J.H.Z., K.A.Ś., C.T.E., J.M., M.H.T., G.L., S.A., E.P., E.C., U.G., S. Schudy, Y.F., P.K., N.M., S. Schindler, A.W., D.N., V.C., R.H., R.B., D.A., R.M.-R., I.T., J.B.M., P.G., Š.B., M.B., J.K.W., L.N., S.B., N.J., N.K., S.H., Z.R., A.K., Y.A.N., A.-K.K., M.V., A.Z.C., A.S., S.P. and P.M. The authorship order for the first seven and last two authors was set a priori. The authorship order for the remaining authors was determined randomly.

Corresponding author

Correspondence to Janis H. Zickfeld.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Christoph Bühren, Shaul Shalvi and Jan Voelkel for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–23, Figs. 1–40 and Tables 1–66.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zickfeld, J.H., Ścigała, K.A., Elbæk, C.T. et al. Effectiveness of ex ante honesty oaths in reducing dishonesty depends on content. Nat Hum Behav 9, 169–187 (2025). https://doi.org/10.1038/s41562-024-02009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-024-02009-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing