Abstract
Category-selective regions in ventral temporal cortex (VTC) have a consistent anatomical organization, which is hypothesized to be scaffolded by white matter connections. However, it is unknown how white matter connections are organized from birth. Here we scanned newborn to 6-month-old infants and adults to determine the organization of the white matter connections of VTC. We find that white matter connections are organized by cytoarchitecture, eccentricity and category from birth. Connectivity profiles of functional regions in the same cytoarchitectonic area are similar from birth and develop in parallel, with decreases in endpoint connectivity to lateral occipital, parietal and somatosensory cortex, and increases in connectivity to lateral prefrontal cortex. In addition, connections between VTC and early visual cortex are organized topographically by eccentricity bands and predict eccentricity biases in VTC. These data show that there are both innate organizing principles of white matter connections of VTC, and capacity for white matter connections to change over development.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The data to make the figures, tables and statistics associated with this paper are available on GitHub at https://github.com/VPNL/bbVTCwm/tree/main/data (ref. 138). Source data are provided with this paper.
Code availability
The code to analyse the data, compute statistics and make the individual figure elements is available on GitHub at https://github.com/VPNL/bbVTCwm/ (ref. 139). The code folder contains the R code used to generate all other figures and statistics in the figures/and statistics/subdirectories. The code used to preprocess the data and perform the analyses is included in the analyses/subdirectory. The label files for the fROIs and the EVC ROIs are provided in the labels folder. The supplement folder contains code to generate supplementary figures.
References
Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).
Peelen, M. V. & Downing, P. E. Selectivity for the human body in the fusiform gyrus. J. Neurophysiol. 93, 603–608 (2005).
Cohen, L. et al. Language‐specific tuning of visual cortex? Functional properties of the visual word form area. Brain 125, 1054–1069 (2002).
Epstein, R., Harris, A., Stanley, D. & Kanwisher, N. The parahippocampal place area: recognition, navigation, or encoding? Neuron 23, 115–125 (1999).
Weiner, K. S. et al. The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. Neuroimage 84, 453–465 (2014).
Weiner, K. S. et al. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. Neuroimage 170, 373–384 (2018).
Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Center–periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2001).
Hasson, U., Levy, I., Behrmann, M., Hendler, T. & Malach, R. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479–490 (2002).
Natu, V. S. et al. Infants’ cortex undergoes microstructural growth coupled with myelination during development. Commun. Biol. 4, 1191 (2021).
Cachia, A. et al. How interindividual differences in brain anatomy shape reading accuracy. Brain Struct. Funct. 223, 701–712 (2018).
Saygin, Z. M. et al. Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat. Neurosci. 15, 321–327 (2011).
Osher, D. E. et al. Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb. Cortex 26, 1668–1683 (2016).
Saygin, Z. M. et al. Connectivity precedes function in the development of the visual word form area. Nat. Neurosci. 19, 1250–1255 (2016).
Bi, Y., Wang, X. & Caramazza, A. Object domain and modality in the ventral visual pathway. Trends Cogn. Sci. 20, 282–290 (2016).
Mahon, B. Z. & Caramazza, A. What drives the organization of object knowledge in the brain? Trends Cogn. Sci. 15, 97–103 (2011).
Kanwisher, N. Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl Acad. Sci. USA 107, 11163–11170 (2010).
Weiner, K. S., Yeatman, J. D. & Wandell, B. A. The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex 97, 274–276 (2017).
Caffarra, S., Karipidis, I. I., Yablonski, M. & Yeatman, J. D. Anatomy and physiology of word-selective visual cortex: from visual features to lexical processing. Brain Struct. Funct. 226, 3051–3065 (2021).
Lerma-Usabiaga, G., Carreiras, M. & Paz-Alonso, P. M. Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proc. Natl Acad. Sci. USA 115, E9981–E9990 (2018).
Kubota, E. et al. White matter connections of high-level visual areas predict cytoarchitecture better than category-selectivity in childhood, but not adulthood. Cereb. Cortex 33, 2485–2506 (2023).
Finzi, D. et al. Differential spatial computations in ventral and lateral face-selective regions are scaffolded by structural connections. Nat. Commun. 12, 2278 (2021).
Grotheer, M., Yeatman, J. & Grill-Spector, K. White matter fascicles and cortical microstructure predict reading-related responses in human ventral temporal cortex. Neuroimage 227, 117669 (2021).
Hannagan, T., Amedi, A., Cohen, L., Dehaene-Lambertz, G. & Dehaene, S. Origins of the specialization for letters and numbers in ventral occipitotemporal cortex. Trends Cogn. Sci. 19, 374–382 (2015).
Op de Beeck, H. P., Pillet, I. & Ritchie, J. B. Factors determining where category-selective areas emerge in visual cortex. Trends Cogn. Sci. 23, 784–797 (2019).
Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R. & Livingstone, M. S. Seeing faces is necessary for face-domain formation. Nat. Neurosci. 20, 1404–1412 (2017).
Sugita, Y. Face perception in monkeys reared with no exposure to faces. Proc. Natl Acad. Sci. USA 105, 394–398 (2008).
Yan, X. et al. When do visual category representations emerge in infants’ brains? eLife 13, RP100260 (2024).
van den Hurk, J., van Baelen, M. & Op de Beeck, H. P. Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc. Natl Acad. Sci. USA 114, E4501–E4510 (2017).
Ratan Murty, N. A. et al. Visual experience is not necessary for the development of face-selectivity in the lateral fusiform gyrus. Proc. Natl Acad. Sci. USA 117, 23011–23020 (2020).
Li, J., Osher, D. E., Hansen, H. A. & Saygin, Z. M. Innate connectivity patterns drive the development of the visual word form area. Sci. Rep. 10, 18039 (2020).
Kamps, F. S., Hendrix, C. L., Brennan, P. A. & Dilks, D. D. Connectivity at the origins of domain specificity in the cortical face and place networks. Proc. Natl Acad. Sci. USA 117, 6163–6169 (2020).
Zeki, S. & Shipp, S. The functional logic of cortical connections. Nature 335, 311–317 (1988).
Van Essen, D. C., Anderson, C. H. & Felleman, D. J. Information processing in the primate visual system: an integrated systems perspective. Science 255, 419–423 (1992).
Amunts, K. & Zilles, K. Architectonic mapping of the human brain beyond Brodmann. Neuron 88, 1086–1107 (2015).
Caspers, J. et al. Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct. Funct. 218, 511–526 (2012).
Lorenz, S. et al. Two new cytoarchitectonic areas on the human mid-fusiform gyrus. Cereb. Cortex 27, 373–385 (2017).
Gomez, J., Natu, V. S., Jeska, B., Barnett, M. & Grill-Spector, K. Development differentially sculpts receptive fields across early and high-level human visual cortex. Nat. Commun. 9, 788 (2018).
Ellis, C. T. et al. Retinotopic organization of visual cortex in human infants. Neuron 109, 2616–2626.e6 (2021).
Butt, O. H., Benson, N. C., Datta, R. & Aguirre, G. K. The fine-scale functional correlation of striate cortex in sighted and blind people. J. Neurosci. 33, 16209–16219 (2013).
Butt, O. H., Benson, N. C., Datta, R. & Aguirre, G. K. Hierarchical and homotopic correlations of spontaneous neural activity within the visual cortex of the sighted and blind. Front. Hum. Neurosci. 9, 25 (2015).
Arcaro, M. J. & Livingstone, M. S. A hierarchical, retinotopic proto-organization of the primate visual system at birth. eLife 6, e26196 (2017).
Arcaro, M. J. & Livingstone, M. S. On the relationship between maps and domains in inferotemporal cortex. Nat. Rev. Neurosci. 22, 573–583 (2021).
Dudink, J., Kerr, J. L., Paterson, K. & Counsell, S. J. Connecting the developing preterm brain. Early Hum. Dev. 84, 777–782 (2008).
Grotheer, M. et al. White matter myelination during early infancy is linked to spatial gradients and myelin content at birth. Nat. Commun. 13, 997 (2022).
Grotheer, M. et al. Human white matter myelinates faster in utero than ex utero. Proc. Natl Acad. Sci. USA 120, e2303491120 (2023).
Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., Cointepas, Y. & Le Bihan, D. Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30, 1121–1132 (2006).
Zöllei, L., Jaimes, C., Saliba, E., Grant, P. E. & Yendiki, A. TRActs constrained by UnderLying INfant anatomy (TRACULInA): an automated probabilistic tractography tool with anatomical priors for use in the newborn brain. Neuroimage 199, 1–17 (2019).
Dimond, D. et al. Early childhood development of white matter fiber density and morphology. Neuroimage 210, 116552 (2020).
Perani, D. et al. Neural language networks at birth. Proc. Natl Acad. Sci. USA 108, 16056–16061 (2011).
Levin, N., Dumoulin, S. O., Winawer, J., Dougherty, R. F. & Wandell, B. A. Cortical maps and white matter tracts following long period of visual deprivation and retinal image restoration. Neuron 65, 21–31 (2010).
Bauer, C. M. et al. Abnormal white matter tractography of visual pathways detected by high-angular-resolution diffusion imaging (HARDI) corresponds to visual dysfunction in cortical/cerebral visual impairment. J. AAPOS 18, 398–401 (2014).
Ortibus, E. et al. Integrity of the inferior longitudinal fasciculus and impaired object recognition in children: a diffusion tensor imaging study. Dev. Med. Child Neurol. 54, 38–43 (2012).
Lennartsson, F., Nilsson, M., Flodmark, O. & Jacobson, L. Damage to the immature optic radiation causes severe reduction of the retinal nerve fiber layer, resulting in predictable visual field defects. Invest. Ophthalmol. Vis. Sci. 55, 8278–8288 (2014).
Zufferey, P. D., Jin, F., Nakamura, H., Tettoni, L. & Innocenti, G. M. The role of pattern vision in the development of cortico-cortical connections. Eur. J. Neurosci. 11, 2669–2688 (1999).
Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).
Weiner, K. S. et al. The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb. Cortex 27, 146–161 (2016).
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
Beyh, A. et al. The medial occipital longitudinal tract supports early stage encoding of visuospatial information. Commun. Biol. 5, 318 (2022).
Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014).
Dubois, J. et al. MRI of the neonatal brain: a review of methodological challenges and neuroscientific advances. J. Magn. Reson. Imaging 53, 1318–1343 (2021).
Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).
Rosenke, M. et al. A cross-validated cytoarchitectonic atlas of the human ventral visual stream. Neuroimage 170, 257–270 (2018).
Caspers, S. et al. The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33, 430–448 (2006).
Richter, M. et al. Cytoarchitectonic segregation of human posterior intraparietal and adjacent parieto-occipital sulcus and its relation to visuomotor and cognitive functions. Cereb. Cortex 29, 1305–1327 (2019).
Malikovic, A. et al. Cytoarchitecture of the human lateral occipital cortex: mapping of two extrastriate areas hOc4la and hOc4lp. Brain Struct. Funct. 221, 1877–1897 (2016).
Rottschy, C. et al. Ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas. Hum. Brain Mapp. 28, 1045–1059 (2007).
Groen, I. I. A., Dekker, T. M., Knapen, T. & Silson, E. H. Visuospatial coding as ubiquitous scaffolding for human cognition. Trends Cogn. Sci. 26, 81–96 (2022).
Gomez, J., Barnett, M. & Grill-Spector, K. Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex. Nat. Hum. Behav. 3, 611–624 (2019).
Silson, E. H., Chan, A. W.-Y., Reynolds, R. C., Kravitz, D. J. & Baker, C. I. A retinotopic basis for the division of high-level scene processing between lateral and ventral human occipitotemporal cortex. J. Neurosci. 35, 11921–11935 (2015).
Somers, D. C. & Sheremata, S. L. Attention maps in the brain. Wiley Interdiscip. Rev. Cogn. Sci. 4, 327–340 (2013).
Silver, M. A. & Kastner, S. Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 13, 488–495 (2009).
Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 369, 988–992 (2020).
Sylvester, C. M. et al. Network-specific selectivity of functional connections in the neonatal brain. Cereb. Cortex 33, 2200–2214 (2023).
Huang, H. et al. White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33, 27–38 (2006).
Thiebaut de Schotten, M. & Forkel, S. J. The emergent properties of the connected brain. Science 378, 505–510 (2022).
Dubois, J. et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014).
Harding-Forrester, S. & Feldman, D. E. Somatosensory maps. Handb. Clin. Neurol. 151, 73–102 (2018).
Humphries, C., Liebenthal, E. & Binder, J. R. Tonotopic organization of human auditory cortex. Neuroimage 50, 1202–1211 (2010).
Amunts, K. et al. Broca’s region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341 (1999).
Lebel, C., Treit, S. & Beaulieu, C. A review of diffusion MRI of typical white matter development from early childhood to young adulthood. NMR Biomed. 32, e3778 (2019).
Edwards, A. D. et al. The Developing Human Connectome Project neonatal data release. Front. Neurosci. 16, 886772 (2022).
Howell, B. R. et al. The UNC/UMN Baby Connectome Project (BCP): an overview of the study design and protocol development. Neuroimage 185, 891–905 (2019).
Walker, L. et al. The diffusion tensor imaging (DTI) component of the NIH MRI study of normal brain development (PedsDTI). Neuroimage 124, 1125–1130 (2016).
Volkow, N. D., Gordon, J. A. & Freund, M. P. The Healthy Brain and Child Development Study—shedding light on opioid exposure, COVID-19, and health disparities. JAMA Psychiatry 78, 471–472 (2021).
Eichert, N. et al. What is special about the human arcuate fasciculus? Lateralization, projections, and expansion. Cortex 118, 107–115 (2019).
Brauer, J., Anwander, A., Perani, D. & Friederici, A. D. Dorsal and ventral pathways in language development. Brain Lang. 127, 289–295 (2013).
Innocenti, G. M. & Frost, D. O. Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature 280, 231–234 (1979).
LaMantia, A. S. & Rakic, P. Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J. Neurosci. 10, 2156–2175 (1990).
Price, D. J., Ferrer, J. M., Blakemore, C. & Kato, N. Postnatal development and plasticity of corticocortical projections from area 17 to area 18 in the cat’s visual cortex. J. Neurosci. 14, 2747–2762 (1994).
Dehay, C., Kennedy, H. & Bullier, J. Characterization of transient cortical projections from auditory, somatosensory, and motor cortices to visual areas 17, 18, and 19 in the kitten. J. Comp. Neurol. 272, 68–89 (1988).
Innocenti, G. M. & Price, D. J. Exuberance in the development of cortical networks. Nat. Rev. Neurosci. 6, 955–965 (2005).
Webster, M. J., Bachevalier, J. & Ungerleider, L. G. Transient subcortical connections of inferior temporal areas TE and TEO in infant macaque monkeys. J. Comp. Neurol. 352, 213–226 (1995).
Kaneko, T. et al. Spatial organization of occipital white matter tracts in the common marmoset. Brain Struct. Funct. 225, 1313–1326 (2020).
Takemura, H., Pestilli, F. & Weiner, K. S. Comparative neuroanatomy: integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex. Neurosci. Res. 146, 1–12 (2019).
Takemura, H. et al. Occipital white matter tracts in human and macaque. Cereb. Cortex 27, 3346–3359 (2017).
Takemura, H. et al. A prominent vertical occipital white matter fasciculus unique to primate brains. Curr. Biol. 34, 3632–3643.e4 (2024).
Zatorre, R. J., Fields, R. D. & Johansen-Berg, H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat. Neurosci. 15, 528–536 (2012).
Blumenfeld-Katzir, T., Pasternak, O., Dagan, M. & Assaf, Y. Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS ONE 6, e20678 (2011).
Fields, R. D. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev. Neurosci. 16, 756–767 (2015).
Fields, R. D. Neuroscience. Change in the brain’s white matter. Science 330, 768–769 (2010).
Florence, S. L., Taub, H. B. & Kaas, J. H. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 282, 1117–1121 (1998).
Jain, N., Florence, S. L., Qi, H. X. & Kaas, J. H. Growth of new brainstem connections in adult monkeys with massive sensory loss. Proc. Natl Acad. Sci. USA 97, 5546–5550 (2000).
Dancause, N. et al. Extensive cortical rewiring after brain injury. J. Neurosci. 25, 10167–10179 (2005).
Monje, M. Myelin plasticity and nervous system function. Annu. Rev. Neurosci. 41, 61–76 (2018).
Bacmeister, C. M. et al. Motor learning drives dynamic patterns of intermittent myelination on learning-activated axons. Nat. Neurosci. 25, 1300–1313 (2022).
Meisler, S. L., Kubota, E., Grotheer, M. & Gabrieli, J. A practical guide for combining functional regions of interest and white matter bundles. Front. Neurosci. 18, 1385847 (2024).
Ewbank, M. P. et al. Repetition suppression in ventral visual cortex is diminished as a function of increasing autistic traits. Cereb. Cortex 25, 3381–3393 (2015).
Dakin, S. & Frith, U. Vagaries of visual perception in autism. Neuron 48, 497–507 (2005).
Conti, E. et al. Network over-connectivity differentiates autism spectrum disorder from other developmental disorders in toddlers: a diffusion MRI study. Hum. Brain Mapp. 38, 2333–2344 (2017).
Picci, G., Gotts, S. J. & Scherf, K. S. A theoretical rut: revisiting and critically evaluating the generalized under/over-connectivity hypothesis of autism. Dev. Sci. 19, 524–549 (2016).
Golarai, G. et al. The fusiform face area is enlarged in Williams syndrome. J. Neurosci. 30, 6700–6712 (2010).
Behrmann, M. & Avidan, G. Congenital prosopagnosia: face-blind from birth. Trends Cogn. Sci. 9, 180–187 (2005).
Duchaine, B. C. & Nakayama, K. Developmental prosopagnosia: a window to content-specific face processing. Curr. Opin. Neurobiol. 16, 166–173 (2006).
Yeatman, J. D. & White, A. L. Reading: the confluence of vision and language. Annu. Rev. Vis. Sci. 7, 487–517 (2021).
Ghotra, A. et al. A size-adaptive 32-channel array coil for awake infant neuroimaging at 3 Tesla MRI. Magn. Reson. Med. 86, 1773–1785 (2021).
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782–790 (2012).
Wang, L. et al. iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction. Nat. Protoc. 18, 1488–1509 (2023).
Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31, 1116–1128 (2006).
Zöllei, L., Iglesias, J. E., Ou, Y., Grant, P. E. & Fischl, B. Infant FreeSurfer: an automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years. Neuroimage 218, 116946 (2020).
Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).
Tournier, J.-D. et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019).
Pietsch, M. et al. A framework for multi-component analysis of diffusion MRI data over the neonatal period. Neuroimage 186, 321–337 (2019).
Bastiani, M. et al. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. Neuroimage 185, 750–763 (2019).
Veraart, J. et al. Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394–406 (2016).
Andersson, J. L. R., Graham, M. S., Zsoldos, E. & Sotiropoulos, S. N. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage 141, 556–572 (2016).
Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).
Dhollander, T., Raffelt, D. & Connelly, A. Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. In ISMRM Workshop on Breaking the Barriers of Diffusion MRI (ISMRM, 2016).
Smith, R. E., Tournier, J.-D., Calamante, F. & Connelly, A. Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62, 1924–1938 (2012).
Grotheer, M., Kubota, E. & Grill-Spector, K. Establishing the functional relevancy of white matter connections in the visual system and beyond. Brain Struct. Funct. 227, 1347–1356 (2022).
Warrington, S. et al. Concurrent mapping of brain ontogeny and phylogeny within a common space: standardized tractography and applications. Sci. Adv. 8, eabq2022 (2022).
Stigliani, A., Weiner, K. S. & Grill-Spector, K. Temporal processing capacity in high-level visual cortex is domain specific. J. Neurosci. 35, 12412–12424 (2015).
Rosenke, M., van Hoof, R., van den Hurk, J., Grill-Spector, K. & Goebel, R. A probabilistic functional atlas of human occipito-temporal visual cortex. Cereb. Cortex 31, 603–619 (2020).
Cai, Q., Paulignan, Y., Brysbaert, M., Ibarrola, D. & Nazir, T. A. The left ventral occipito-temporal response to words depends on language lateralization but not on visual familiarity. Cereb. Cortex 20, 1153–1163 (2010).
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. A. & Raichle, M. E. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331, 585–589 (1988).
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn (Springer, 2002).
Benson, N. C., Butt, O. H., Brainard, D. H. & Aguirre, G. K. Correction of distortion in flattened representations of the cortical surface allows prediction of V1-V3 functional organization from anatomy. PLoS Comput. Biol. 10, e1003538 (2014).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Kubota, E. et al. bbVTCwm. GitHub https://github.com/VPNL/bbVTCwm/tree/main/data (2025).
Kubota, E. et al. bbVTCwm. GitHub https://github.com/VPNL/bbVTCwm/ (2025).
Acknowledgements
This work was funded by Stanford Wu Tsai Neurodevelopment big idea and accelerator grants, as well as NIH grants R01EY033835 and R01EY022318 to K.G.-S.; the National Science Foundation Graduate Research Fellowship (grant number DGE-1656518) to E.K.; the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation – project number 222641018 – SFB/TRR 135 TP C10), as well as ‘The Adaptive Mind’, funded by the Excellence Program of the Hessian Ministry of Higher Education, Science, Research and Art to M.G.; the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation – grant INST 169/22–1), the Excellence Program of the Hessian Ministry of Higher Education, Science, Research and Art (grants: 2/16/519/03/09.001(0001)/101 and LOEWE/4TP//519/05/02.002(0004)/107) to B.K. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper.
Author information
Authors and Affiliations
Contributions
E.K. designed the analyses, wrote the code and data analysis pipelines, analysed the data and wrote the paper. X.Y. participated in the design and data analysis, and collected the data. S.T., B.F. and C.T. collected the data, segmented each brain anatomy image into grey and white matter, and created cortical surface reconstructions. S.D. and D.O. validated the alignment between fROIs, cytoarchitectonic areas and anatomical landmarks. M.G. participated in the data analyses. V.S.N. participated in the design and data analysis and collected the data. B.K. designed the infant coil used for data collection. K.G.-S. oversaw all parts of the research: design, data analysis, and wrote the paper. All authors read and gave feedback on the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Human Behaviour thanks Douglas Dean, Edward Silson and Hiromasa Takemura for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–56 and Tables 1–8.
Supplementary Video 1
White matter connections between mFus-faces and early visual cortex in an example newborn participant. Streamlines are coloured by eccentricity band. Red: 0–5°, green: 5–10°, blue: 10–20°.
Supplementary Video 2
White matter connections between CoS-places and early visual cortex in an example newborn participant. Streamlines are coloured by eccentricity band. Red: 0–5°, green: 5–10°, blue: 10–20°.
Supplementary Video 3
White matter connections between mFus-faces and early visual cortex in an example adult. Streamlines are coloured by eccentricity band. Red: 0–5°, green: 5–10°, blue: 10–20°.
Supplementary Video 4
White matter connections between CoS-places and early visual cortex in an example adult participant. Streamlines are coloured by eccentricity band. Red: 0–5°, green: 5–10°, blue: 10–20°.
Source data
Source Data Fig. 2
Statistical source data.
Source Data Fig. 2
Statistical source data.
Source Data Fig. 3
Statistical source data.
Source Data Fig. 4
Statistical source data for slope plots.
Source Data Fig. 4
Statistical source data for slope plots.
Source Data Fig. 4
Statistical source data for slope plots.
Source Data Fig. 4
Statistical source data for slope plots.
Source Data Fig. 4
Statistical source data for slope plots.
Source Data Fig. 4
Statistical source data for slope plots.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kubota, E., Yan, X., Tung, S. et al. White matter connections of human ventral temporal cortex are organized by cytoarchitecture, eccentricity and category-selectivity from birth. Nat Hum Behav 9, 955–970 (2025). https://doi.org/10.1038/s41562-025-02116-6
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41562-025-02116-6
This article is cited by
-
Cross-sectional and longitudinal changes in category selectivity in visual cortex following pediatric cortical resection
Communications Biology (2025)