Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

White matter connections of human ventral temporal cortex are organized by cytoarchitecture, eccentricity and category-selectivity from birth

Abstract

Category-selective regions in ventral temporal cortex (VTC) have a consistent anatomical organization, which is hypothesized to be scaffolded by white matter connections. However, it is unknown how white matter connections are organized from birth. Here we scanned newborn to 6-month-old infants and adults to determine the organization of the white matter connections of VTC. We find that white matter connections are organized by cytoarchitecture, eccentricity and category from birth. Connectivity profiles of functional regions in the same cytoarchitectonic area are similar from birth and develop in parallel, with decreases in endpoint connectivity to lateral occipital, parietal and somatosensory cortex, and increases in connectivity to lateral prefrontal cortex. In addition, connections between VTC and early visual cortex are organized topographically by eccentricity bands and predict eccentricity biases in VTC. These data show that there are both innate organizing principles of white matter connections of VTC, and capacity for white matter connections to change over development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional atlas and analysis pipeline.
Fig. 2: White matter connections are organized by cytoarchitecture and category from infancy.
Fig. 3: White matter connections of VTC are organized by eccentricity from birth.
Fig. 4: Connectivity of VTC develops from infancy to adulthood.

Similar content being viewed by others

Data availability

The data to make the figures, tables and statistics associated with this paper are available on GitHub at https://github.com/VPNL/bbVTCwm/tree/main/data (ref. 138). Source data are provided with this paper.

Code availability

The code to analyse the data, compute statistics and make the individual figure elements is available on GitHub at https://github.com/VPNL/bbVTCwm/ (ref. 139). The code folder contains the R code used to generate all other figures and statistics in the figures/and statistics/subdirectories. The code used to preprocess the data and perform the analyses is included in the analyses/subdirectory. The label files for the fROIs and the EVC ROIs are provided in the labels folder. The supplement folder contains code to generate supplementary figures.

References

  1. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peelen, M. V. & Downing, P. E. Selectivity for the human body in the fusiform gyrus. J. Neurophysiol. 93, 603–608 (2005).

    Article  PubMed  Google Scholar 

  3. Cohen, L. et al. Language‐specific tuning of visual cortex? Functional properties of the visual word form area. Brain 125, 1054–1069 (2002).

    Article  PubMed  Google Scholar 

  4. Epstein, R., Harris, A., Stanley, D. & Kanwisher, N. The parahippocampal place area: recognition, navigation, or encoding? Neuron 23, 115–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Weiner, K. S. et al. The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. Neuroimage 84, 453–465 (2014).

    Article  PubMed  Google Scholar 

  6. Weiner, K. S. et al. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. Neuroimage 170, 373–384 (2018).

    Article  PubMed  Google Scholar 

  7. Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Center–periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Hasson, U., Levy, I., Behrmann, M., Hendler, T. & Malach, R. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Natu, V. S. et al. Infants’ cortex undergoes microstructural growth coupled with myelination during development. Commun. Biol. 4, 1191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cachia, A. et al. How interindividual differences in brain anatomy shape reading accuracy. Brain Struct. Funct. 223, 701–712 (2018).

    Article  PubMed  Google Scholar 

  11. Saygin, Z. M. et al. Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat. Neurosci. 15, 321–327 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Osher, D. E. et al. Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb. Cortex 26, 1668–1683 (2016).

    Article  PubMed  Google Scholar 

  13. Saygin, Z. M. et al. Connectivity precedes function in the development of the visual word form area. Nat. Neurosci. 19, 1250–1255 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bi, Y., Wang, X. & Caramazza, A. Object domain and modality in the ventral visual pathway. Trends Cogn. Sci. 20, 282–290 (2016).

    Article  PubMed  Google Scholar 

  15. Mahon, B. Z. & Caramazza, A. What drives the organization of object knowledge in the brain? Trends Cogn. Sci. 15, 97–103 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kanwisher, N. Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl Acad. Sci. USA 107, 11163–11170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weiner, K. S., Yeatman, J. D. & Wandell, B. A. The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex 97, 274–276 (2017).

    Article  PubMed  Google Scholar 

  18. Caffarra, S., Karipidis, I. I., Yablonski, M. & Yeatman, J. D. Anatomy and physiology of word-selective visual cortex: from visual features to lexical processing. Brain Struct. Funct. 226, 3051–3065 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lerma-Usabiaga, G., Carreiras, M. & Paz-Alonso, P. M. Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proc. Natl Acad. Sci. USA 115, E9981–E9990 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kubota, E. et al. White matter connections of high-level visual areas predict cytoarchitecture better than category-selectivity in childhood, but not adulthood. Cereb. Cortex 33, 2485–2506 (2023).

    Article  PubMed  Google Scholar 

  21. Finzi, D. et al. Differential spatial computations in ventral and lateral face-selective regions are scaffolded by structural connections. Nat. Commun. 12, 2278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grotheer, M., Yeatman, J. & Grill-Spector, K. White matter fascicles and cortical microstructure predict reading-related responses in human ventral temporal cortex. Neuroimage 227, 117669 (2021).

    Article  PubMed  Google Scholar 

  23. Hannagan, T., Amedi, A., Cohen, L., Dehaene-Lambertz, G. & Dehaene, S. Origins of the specialization for letters and numbers in ventral occipitotemporal cortex. Trends Cogn. Sci. 19, 374–382 (2015).

    Article  PubMed  Google Scholar 

  24. Op de Beeck, H. P., Pillet, I. & Ritchie, J. B. Factors determining where category-selective areas emerge in visual cortex. Trends Cogn. Sci. 23, 784–797 (2019).

    Article  PubMed  Google Scholar 

  25. Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R. & Livingstone, M. S. Seeing faces is necessary for face-domain formation. Nat. Neurosci. 20, 1404–1412 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sugita, Y. Face perception in monkeys reared with no exposure to faces. Proc. Natl Acad. Sci. USA 105, 394–398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan, X. et al. When do visual category representations emerge in infants’ brains? eLife 13, RP100260 (2024).

  28. van den Hurk, J., van Baelen, M. & Op de Beeck, H. P. Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc. Natl Acad. Sci. USA 114, E4501–E4510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ratan Murty, N. A. et al. Visual experience is not necessary for the development of face-selectivity in the lateral fusiform gyrus. Proc. Natl Acad. Sci. USA 117, 23011–23020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li, J., Osher, D. E., Hansen, H. A. & Saygin, Z. M. Innate connectivity patterns drive the development of the visual word form area. Sci. Rep. 10, 18039 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kamps, F. S., Hendrix, C. L., Brennan, P. A. & Dilks, D. D. Connectivity at the origins of domain specificity in the cortical face and place networks. Proc. Natl Acad. Sci. USA 117, 6163–6169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zeki, S. & Shipp, S. The functional logic of cortical connections. Nature 335, 311–317 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Van Essen, D. C., Anderson, C. H. & Felleman, D. J. Information processing in the primate visual system: an integrated systems perspective. Science 255, 419–423 (1992).

    Article  PubMed  Google Scholar 

  34. Amunts, K. & Zilles, K. Architectonic mapping of the human brain beyond Brodmann. Neuron 88, 1086–1107 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Caspers, J. et al. Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct. Funct. 218, 511–526 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lorenz, S. et al. Two new cytoarchitectonic areas on the human mid-fusiform gyrus. Cereb. Cortex 27, 373–385 (2017).

    PubMed  Google Scholar 

  37. Gomez, J., Natu, V. S., Jeska, B., Barnett, M. & Grill-Spector, K. Development differentially sculpts receptive fields across early and high-level human visual cortex. Nat. Commun. 9, 788 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ellis, C. T. et al. Retinotopic organization of visual cortex in human infants. Neuron 109, 2616–2626.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Butt, O. H., Benson, N. C., Datta, R. & Aguirre, G. K. The fine-scale functional correlation of striate cortex in sighted and blind people. J. Neurosci. 33, 16209–16219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Butt, O. H., Benson, N. C., Datta, R. & Aguirre, G. K. Hierarchical and homotopic correlations of spontaneous neural activity within the visual cortex of the sighted and blind. Front. Hum. Neurosci. 9, 25 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Arcaro, M. J. & Livingstone, M. S. A hierarchical, retinotopic proto-organization of the primate visual system at birth. eLife 6, e26196 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Arcaro, M. J. & Livingstone, M. S. On the relationship between maps and domains in inferotemporal cortex. Nat. Rev. Neurosci. 22, 573–583 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dudink, J., Kerr, J. L., Paterson, K. & Counsell, S. J. Connecting the developing preterm brain. Early Hum. Dev. 84, 777–782 (2008).

    Article  PubMed  Google Scholar 

  44. Grotheer, M. et al. White matter myelination during early infancy is linked to spatial gradients and myelin content at birth. Nat. Commun. 13, 997 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grotheer, M. et al. Human white matter myelinates faster in utero than ex utero. Proc. Natl Acad. Sci. USA 120, e2303491120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., Cointepas, Y. & Le Bihan, D. Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30, 1121–1132 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Zöllei, L., Jaimes, C., Saliba, E., Grant, P. E. & Yendiki, A. TRActs constrained by UnderLying INfant anatomy (TRACULInA): an automated probabilistic tractography tool with anatomical priors for use in the newborn brain. Neuroimage 199, 1–17 (2019).

    Article  PubMed  Google Scholar 

  48. Dimond, D. et al. Early childhood development of white matter fiber density and morphology. Neuroimage 210, 116552 (2020).

    Article  PubMed  Google Scholar 

  49. Perani, D. et al. Neural language networks at birth. Proc. Natl Acad. Sci. USA 108, 16056–16061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Levin, N., Dumoulin, S. O., Winawer, J., Dougherty, R. F. & Wandell, B. A. Cortical maps and white matter tracts following long period of visual deprivation and retinal image restoration. Neuron 65, 21–31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bauer, C. M. et al. Abnormal white matter tractography of visual pathways detected by high-angular-resolution diffusion imaging (HARDI) corresponds to visual dysfunction in cortical/cerebral visual impairment. J. AAPOS 18, 398–401 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ortibus, E. et al. Integrity of the inferior longitudinal fasciculus and impaired object recognition in children: a diffusion tensor imaging study. Dev. Med. Child Neurol. 54, 38–43 (2012).

    Article  PubMed  Google Scholar 

  53. Lennartsson, F., Nilsson, M., Flodmark, O. & Jacobson, L. Damage to the immature optic radiation causes severe reduction of the retinal nerve fiber layer, resulting in predictable visual field defects. Invest. Ophthalmol. Vis. Sci. 55, 8278–8288 (2014).

    Article  PubMed  Google Scholar 

  54. Zufferey, P. D., Jin, F., Nakamura, H., Tettoni, L. & Innocenti, G. M. The role of pattern vision in the development of cortico-cortical connections. Eur. J. Neurosci. 11, 2669–2688 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Weiner, K. S. et al. The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb. Cortex 27, 146–161 (2016).

    Article  PubMed Central  Google Scholar 

  57. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Beyh, A. et al. The medial occipital longitudinal tract supports early stage encoding of visuospatial information. Commun. Biol. 5, 318 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dubois, J. et al. MRI of the neonatal brain: a review of methodological challenges and neuroscientific advances. J. Magn. Reson. Imaging 53, 1318–1343 (2021).

    Article  PubMed  Google Scholar 

  61. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Rosenke, M. et al. A cross-validated cytoarchitectonic atlas of the human ventral visual stream. Neuroimage 170, 257–270 (2018).

    Article  PubMed  Google Scholar 

  63. Caspers, S. et al. The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33, 430–448 (2006).

    Article  PubMed  Google Scholar 

  64. Richter, M. et al. Cytoarchitectonic segregation of human posterior intraparietal and adjacent parieto-occipital sulcus and its relation to visuomotor and cognitive functions. Cereb. Cortex 29, 1305–1327 (2019).

    Article  PubMed  Google Scholar 

  65. Malikovic, A. et al. Cytoarchitecture of the human lateral occipital cortex: mapping of two extrastriate areas hOc4la and hOc4lp. Brain Struct. Funct. 221, 1877–1897 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Rottschy, C. et al. Ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas. Hum. Brain Mapp. 28, 1045–1059 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Groen, I. I. A., Dekker, T. M., Knapen, T. & Silson, E. H. Visuospatial coding as ubiquitous scaffolding for human cognition. Trends Cogn. Sci. 26, 81–96 (2022).

    Article  PubMed  Google Scholar 

  68. Gomez, J., Barnett, M. & Grill-Spector, K. Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex. Nat. Hum. Behav. 3, 611–624 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Silson, E. H., Chan, A. W.-Y., Reynolds, R. C., Kravitz, D. J. & Baker, C. I. A retinotopic basis for the division of high-level scene processing between lateral and ventral human occipitotemporal cortex. J. Neurosci. 35, 11921–11935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Somers, D. C. & Sheremata, S. L. Attention maps in the brain. Wiley Interdiscip. Rev. Cogn. Sci. 4, 327–340 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Silver, M. A. & Kastner, S. Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 13, 488–495 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 369, 988–992 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Sylvester, C. M. et al. Network-specific selectivity of functional connections in the neonatal brain. Cereb. Cortex 33, 2200–2214 (2023).

    Article  PubMed  Google Scholar 

  74. Huang, H. et al. White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33, 27–38 (2006).

    Article  PubMed  Google Scholar 

  75. Thiebaut de Schotten, M. & Forkel, S. J. The emergent properties of the connected brain. Science 378, 505–510 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Dubois, J. et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Harding-Forrester, S. & Feldman, D. E. Somatosensory maps. Handb. Clin. Neurol. 151, 73–102 (2018).

    Article  PubMed  Google Scholar 

  78. Humphries, C., Liebenthal, E. & Binder, J. R. Tonotopic organization of human auditory cortex. Neuroimage 50, 1202–1211 (2010).

    Article  PubMed  Google Scholar 

  79. Amunts, K. et al. Broca’s region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Lebel, C., Treit, S. & Beaulieu, C. A review of diffusion MRI of typical white matter development from early childhood to young adulthood. NMR Biomed. 32, e3778 (2019).

    Article  PubMed  Google Scholar 

  81. Edwards, A. D. et al. The Developing Human Connectome Project neonatal data release. Front. Neurosci. 16, 886772 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Howell, B. R. et al. The UNC/UMN Baby Connectome Project (BCP): an overview of the study design and protocol development. Neuroimage 185, 891–905 (2019).

    Article  PubMed  Google Scholar 

  83. Walker, L. et al. The diffusion tensor imaging (DTI) component of the NIH MRI study of normal brain development (PedsDTI). Neuroimage 124, 1125–1130 (2016).

    Article  PubMed  Google Scholar 

  84. Volkow, N. D., Gordon, J. A. & Freund, M. P. The Healthy Brain and Child Development Study—shedding light on opioid exposure, COVID-19, and health disparities. JAMA Psychiatry 78, 471–472 (2021).

    Article  PubMed  Google Scholar 

  85. Eichert, N. et al. What is special about the human arcuate fasciculus? Lateralization, projections, and expansion. Cortex 118, 107–115 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Brauer, J., Anwander, A., Perani, D. & Friederici, A. D. Dorsal and ventral pathways in language development. Brain Lang. 127, 289–295 (2013).

    Article  PubMed  Google Scholar 

  87. Innocenti, G. M. & Frost, D. O. Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature 280, 231–234 (1979).

    Article  CAS  PubMed  Google Scholar 

  88. LaMantia, A. S. & Rakic, P. Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J. Neurosci. 10, 2156–2175 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Price, D. J., Ferrer, J. M., Blakemore, C. & Kato, N. Postnatal development and plasticity of corticocortical projections from area 17 to area 18 in the cat’s visual cortex. J. Neurosci. 14, 2747–2762 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dehay, C., Kennedy, H. & Bullier, J. Characterization of transient cortical projections from auditory, somatosensory, and motor cortices to visual areas 17, 18, and 19 in the kitten. J. Comp. Neurol. 272, 68–89 (1988).

    Article  CAS  PubMed  Google Scholar 

  91. Innocenti, G. M. & Price, D. J. Exuberance in the development of cortical networks. Nat. Rev. Neurosci. 6, 955–965 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Webster, M. J., Bachevalier, J. & Ungerleider, L. G. Transient subcortical connections of inferior temporal areas TE and TEO in infant macaque monkeys. J. Comp. Neurol. 352, 213–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Kaneko, T. et al. Spatial organization of occipital white matter tracts in the common marmoset. Brain Struct. Funct. 225, 1313–1326 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Takemura, H., Pestilli, F. & Weiner, K. S. Comparative neuroanatomy: integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex. Neurosci. Res. 146, 1–12 (2019).

    Article  PubMed  Google Scholar 

  95. Takemura, H. et al. Occipital white matter tracts in human and macaque. Cereb. Cortex 27, 3346–3359 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Takemura, H. et al. A prominent vertical occipital white matter fasciculus unique to primate brains. Curr. Biol. 34, 3632–3643.e4 (2024).

  97. Zatorre, R. J., Fields, R. D. & Johansen-Berg, H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat. Neurosci. 15, 528–536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Blumenfeld-Katzir, T., Pasternak, O., Dagan, M. & Assaf, Y. Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS ONE 6, e20678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fields, R. D. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev. Neurosci. 16, 756–767 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fields, R. D. Neuroscience. Change in the brain’s white matter. Science 330, 768–769 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Florence, S. L., Taub, H. B. & Kaas, J. H. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 282, 1117–1121 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Jain, N., Florence, S. L., Qi, H. X. & Kaas, J. H. Growth of new brainstem connections in adult monkeys with massive sensory loss. Proc. Natl Acad. Sci. USA 97, 5546–5550 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dancause, N. et al. Extensive cortical rewiring after brain injury. J. Neurosci. 25, 10167–10179 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Monje, M. Myelin plasticity and nervous system function. Annu. Rev. Neurosci. 41, 61–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Bacmeister, C. M. et al. Motor learning drives dynamic patterns of intermittent myelination on learning-activated axons. Nat. Neurosci. 25, 1300–1313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Meisler, S. L., Kubota, E., Grotheer, M. & Gabrieli, J. A practical guide for combining functional regions of interest and white matter bundles. Front. Neurosci. 18, 1385847 (2024).

  107. Ewbank, M. P. et al. Repetition suppression in ventral visual cortex is diminished as a function of increasing autistic traits. Cereb. Cortex 25, 3381–3393 (2015).

    Article  PubMed  Google Scholar 

  108. Dakin, S. & Frith, U. Vagaries of visual perception in autism. Neuron 48, 497–507 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Conti, E. et al. Network over-connectivity differentiates autism spectrum disorder from other developmental disorders in toddlers: a diffusion MRI study. Hum. Brain Mapp. 38, 2333–2344 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Picci, G., Gotts, S. J. & Scherf, K. S. A theoretical rut: revisiting and critically evaluating the generalized under/over-connectivity hypothesis of autism. Dev. Sci. 19, 524–549 (2016).

    Article  PubMed  Google Scholar 

  111. Golarai, G. et al. The fusiform face area is enlarged in Williams syndrome. J. Neurosci. 30, 6700–6712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Behrmann, M. & Avidan, G. Congenital prosopagnosia: face-blind from birth. Trends Cogn. Sci. 9, 180–187 (2005).

    Article  PubMed  Google Scholar 

  113. Duchaine, B. C. & Nakayama, K. Developmental prosopagnosia: a window to content-specific face processing. Curr. Opin. Neurobiol. 16, 166–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Yeatman, J. D. & White, A. L. Reading: the confluence of vision and language. Annu. Rev. Vis. Sci. 7, 487–517 (2021).

    Article  PubMed  Google Scholar 

  115. Ghotra, A. et al. A size-adaptive 32-channel array coil for awake infant neuroimaging at 3 Tesla MRI. Magn. Reson. Med. 86, 1773–1785 (2021).

    Article  PubMed  Google Scholar 

  116. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782–790 (2012).

    Article  PubMed  Google Scholar 

  117. Wang, L. et al. iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction. Nat. Protoc. 18, 1488–1509 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31, 1116–1128 (2006).

    Article  PubMed  Google Scholar 

  119. Zöllei, L., Iglesias, J. E., Ou, Y., Grant, P. E. & Fischl, B. Infant FreeSurfer: an automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years. Neuroimage 218, 116946 (2020).

    Article  PubMed  Google Scholar 

  120. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).

    Article  PubMed  Google Scholar 

  121. Tournier, J.-D. et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019).

    Article  PubMed  Google Scholar 

  122. Pietsch, M. et al. A framework for multi-component analysis of diffusion MRI data over the neonatal period. Neuroimage 186, 321–337 (2019).

    Article  PubMed  Google Scholar 

  123. Bastiani, M. et al. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. Neuroimage 185, 750–763 (2019).

    Article  PubMed  Google Scholar 

  124. Veraart, J. et al. Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394–406 (2016).

    Article  PubMed  Google Scholar 

  125. Andersson, J. L. R., Graham, M. S., Zsoldos, E. & Sotiropoulos, S. N. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage 141, 556–572 (2016).

    Article  PubMed  Google Scholar 

  126. Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Dhollander, T., Raffelt, D. & Connelly, A. Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. In ISMRM Workshop on Breaking the Barriers of Diffusion MRI (ISMRM, 2016).

  128. Smith, R. E., Tournier, J.-D., Calamante, F. & Connelly, A. Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62, 1924–1938 (2012).

    Article  PubMed  Google Scholar 

  129. Grotheer, M., Kubota, E. & Grill-Spector, K. Establishing the functional relevancy of white matter connections in the visual system and beyond. Brain Struct. Funct. 227, 1347–1356 (2022).

    Article  PubMed  Google Scholar 

  130. Warrington, S. et al. Concurrent mapping of brain ontogeny and phylogeny within a common space: standardized tractography and applications. Sci. Adv. 8, eabq2022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Stigliani, A., Weiner, K. S. & Grill-Spector, K. Temporal processing capacity in high-level visual cortex is domain specific. J. Neurosci. 35, 12412–12424 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rosenke, M., van Hoof, R., van den Hurk, J., Grill-Spector, K. & Goebel, R. A probabilistic functional atlas of human occipito-temporal visual cortex. Cereb. Cortex 31, 603–619 (2020).

    Article  PubMed Central  Google Scholar 

  133. Cai, Q., Paulignan, Y., Brysbaert, M., Ibarrola, D. & Nazir, T. A. The left ventral occipito-temporal response to words depends on language lateralization but not on visual familiarity. Cereb. Cortex 20, 1153–1163 (2010).

    Article  PubMed  Google Scholar 

  134. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. A. & Raichle, M. E. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331, 585–589 (1988).

    Article  CAS  PubMed  Google Scholar 

  135. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn (Springer, 2002).

  136. Benson, N. C., Butt, O. H., Brainard, D. H. & Aguirre, G. K. Correction of distortion in flattened representations of the cortical surface allows prediction of V1-V3 functional organization from anatomy. PLoS Comput. Biol. 10, e1003538 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article  Google Scholar 

  138. Kubota, E. et al. bbVTCwm. GitHub https://github.com/VPNL/bbVTCwm/tree/main/data (2025).

  139. Kubota, E. et al. bbVTCwm. GitHub https://github.com/VPNL/bbVTCwm/ (2025).

Download references

Acknowledgements

This work was funded by Stanford Wu Tsai Neurodevelopment big idea and accelerator grants, as well as NIH grants R01EY033835 and R01EY022318 to K.G.-S.; the National Science Foundation Graduate Research Fellowship (grant number DGE-1656518) to E.K.; the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation – project number 222641018 – SFB/TRR 135 TP C10), as well as ‘The Adaptive Mind’, funded by the Excellence Program of the Hessian Ministry of Higher Education, Science, Research and Art to M.G.; the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation – grant INST 169/22–1), the Excellence Program of the Hessian Ministry of Higher Education, Science, Research and Art (grants: 2/16/519/03/09.001(0001)/101 and LOEWE/4TP//519/05/02.002(0004)/107) to B.K. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

E.K. designed the analyses, wrote the code and data analysis pipelines, analysed the data and wrote the paper. X.Y. participated in the design and data analysis, and collected the data. S.T., B.F. and C.T. collected the data, segmented each brain anatomy image into grey and white matter, and created cortical surface reconstructions. S.D. and D.O. validated the alignment between fROIs, cytoarchitectonic areas and anatomical landmarks. M.G. participated in the data analyses. V.S.N. participated in the design and data analysis and collected the data. B.K. designed the infant coil used for data collection. K.G.-S. oversaw all parts of the research: design, data analysis, and wrote the paper. All authors read and gave feedback on the paper.

Corresponding author

Correspondence to Emily Kubota.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Douglas Dean, Edward Silson and Hiromasa Takemura for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–56 and Tables 1–8.

Reporting Summary

Peer Review File

Supplementary Video 1

White matter connections between mFus-faces and early visual cortex in an example newborn participant. Streamlines are coloured by eccentricity band. Red: 0–5°, green: 5–10°, blue: 10–20°.

Supplementary Video 2

White matter connections between CoS-places and early visual cortex in an example newborn participant. Streamlines are coloured by eccentricity band. Red: 0–5°, green: 5–10°, blue: 10–20°.

Supplementary Video 3

White matter connections between mFus-faces and early visual cortex in an example adult. Streamlines are coloured by eccentricity band. Red: 0–5°, green: 5–10°, blue: 10–20°.

Supplementary Video 4

White matter connections between CoS-places and early visual cortex in an example adult participant. Streamlines are coloured by eccentricity band. Red: 0–5°, green: 5–10°, blue: 10–20°.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data for slope plots.

Source Data Fig. 4

Statistical source data for slope plots.

Source Data Fig. 4

Statistical source data for slope plots.

Source Data Fig. 4

Statistical source data for slope plots.

Source Data Fig. 4

Statistical source data for slope plots.

Source Data Fig. 4

Statistical source data for slope plots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, E., Yan, X., Tung, S. et al. White matter connections of human ventral temporal cortex are organized by cytoarchitecture, eccentricity and category-selectivity from birth. Nat Hum Behav 9, 955–970 (2025). https://doi.org/10.1038/s41562-025-02116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-025-02116-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing