Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sleep selectively and durably enhances memory for the sequence of real-world experiences

Abstract

Sleep is thought to play a critical role in the retention of memory for past experiences (episodic memory), reducing the rate of forgetting compared with wakefulness. Yet it remains unclear whether and how sleep actively transforms the way we remember multidimensional real-world experiences, and how such memory transformation unfolds over the days, months and years that follow. In an exception to the law of forgetting, we show that sleep actively and selectively improves the accuracy of memory for a one-time, real-world experience (an art tour)—specifically boosting memory for the order of tour items (sequential associations) versus perceptual details from the tour (featural associations). This above-baseline boost in sequence memory was not evident after a matched period of wakefulness. Moreover, the preferential retention of sequence relative to featural memory observed after a night’s sleep grew over time up to 1 year post-encoding. Finally, overnight polysomnography showed that sleep-related memory enhancement was associated with the duration and neurophysiological hallmarks of slow-wave sleep previously linked to sequential neural replay, particularly spindle–slow wave coupling. These results suggest that sleep serves a crucial and selective role in enhancing sequential organization in our memory for past events at the expense of perceptual details, linking sleep-related neural mechanisms to the days-to-years-long transformation of memory for complex real-life experiences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of study design.
Fig. 2: Transformation of sequence versus featural memory over time.
Fig. 3: Long-term transformation of sequence versus featural memory.
Fig. 4: Relationship between spindle–slow wave coupling and overnight memory change.

Similar content being viewed by others

Data availability

Behavioural (including behaviour–electrophysiological relationship) data are openly available in our OSF repository at https://osf.io/bxm5w/. Raw electrophysiological data are available upon request.

Code availability

Analysis code is openly available in our OSF repository at https://osf.io/bxm5w/. Analysis code for the heretofore unpublished refined spindle–SO coupling method (Supplementary Results, p. 15) is available upon request.

References

  1. Tulving, E. Episodic and semantic memory. Organ. Mem. 1, 381–403 (1972).

    Google Scholar 

  2. Kahana, M. J., Diamond, N. B. & Aka, A. in Handbook of Human Memory (eds Kahana, M. & Wagner, A. D.) 29–63 (Oxford Univ. Press, 2024).

  3. Ebbinghaus, H. On Memory (Colombia Univ., 1913).

  4. Rubin, D. C. & Wenzel, A. E. One hundred years of forgetting: a quantitative description of retention. Psychol. Rev. 103, 734–760 (1986).

    Article  Google Scholar 

  5. Dudai, Y. The restless engram: consolidations never end. Annu. Rev. Neurosci. 35, 227–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Berres, S. & Erdfelder, E. The sleep benefit in episodic memory: an integrative review and a meta-analysis. Psychol. Bull. 147, 1309–1353 (2021).

    Article  PubMed  Google Scholar 

  7. Jenkins, J. G. & Dallenbach, K. M. Obliviscence during sleep and waking. Am. J. Psychol. 35, 605–612 (1924).

    Article  Google Scholar 

  8. Rasch, B. & Born, J. About sleep’s role in memory. Physiol. Rev. 93, 681–766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mednick, S. C., Cai, D. J., Shuman, T., Anagnostaras, S. & Wixted, J. T. An opportunistic theory of cellular and systems consolidation. Trends Neurosci. 34, 504–514 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yonelinas, A. P., Ranganath, C., Ekstrom, A. D. & Wiltgen, B. J. A contextual binding theory of episodic memory: systems consolidation reconsidered. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-019-0150-4 (2019).

  11. Antony, J. W. & Schapiro, A. C. Active and effective replay: systems consolidation reconsidered again. Nat. Rev. Neurosci. 20, 506–507 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Ellenbogen, J. M., Payne, J. D. & Stickgold, R. The role of sleep in declarative memory consolidation: passive, permissive, active or none? Curr. Opin. Neurobiol. 16, 716–722 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, S. Y. & Payne, J. D. Neural correlates of sleep, stress, and selective memory consolidation. Curr. Opin. Behav. Sci. 33, 57–64 (2020).

    Article  Google Scholar 

  14. Staresina, B. P. Coupled sleep rhythms for memory consolidation. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2024.02.002 (2024).

    Article  PubMed  Google Scholar 

  15. Skelin, I. et al. Coupling between slow waves and sharp-wave ripples engages distributed neural activity during sleep in humans. Proc. Natl Acad. Sci. USA 118, e2012075118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brodt, S., Inostroza, M., Niethard, N. & Born, J. Sleep—a brain-state serving systems memory consolidation. Neuron 111, 1050–1075 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee, A. K. & Wilson, M. A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Klinzing, J. G., Niethard, N. & Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. https://doi.org/10.1038/s41593-019-0467-3 (2019).

    Article  PubMed  Google Scholar 

  20. Staresina, B. P. et al. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat. Neurosci. 18, 1679–1686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Staresina, B. P., Niediek, J., Borger, V., Surges, R. & Mormann, F. How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep. Nat. Neurosci. 26, 1429–1437 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petzka, M., Charest, I., Balanos, G. M. & Staresina, B. P. Does sleep-dependent consolidation favour weak memories? Cortex https://doi.org/10.1016/j.cortex.2020.10.005 (2020).

    Article  PubMed  Google Scholar 

  23. Cowan, E. et al. Sleep spindles promote the restructuring of memory representations in ventromedial prefrontal cortex through enhanced hippocampal–cortical functional connectivity. J. Neurosci. 40, 1909–1919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schechtman, E., Stickgold, R. & Paller, K. A. in Handbook on Human Memory (eds Kahana, M. & Anthony, W.) 1348–1370 (Oxford Univ. Press, 2024).

  25. Schreiner, T., Petzka, M., Staudigl, T. & Staresina, B. P. Endogenous memory reactivation during sleep in humans is clocked by slow oscillation-spindle complexes. Nat. Commun. 12, 3112 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Helfrich, R. F. et al. Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nat. Commun. 10, 3572 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cordi, M. J. & Rasch, B. How robust are sleep-mediated memory benefits? Curr. Opin. Neurobiol. 67, 1–7 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Nemeth, D. et al. Optimizing methodology of sleep and memory research in humans. Preprint at https://hal.science/hal-04187452v1/document (2023).

  29. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    Article  PubMed  Google Scholar 

  30. Durrant, S. J., Taylor, C., Cairney, S. & Lewis, P. A. Sleep-dependent consolidation of statistical learning. Neuropsychologia 49, 1322–1331 (2011).

    Article  PubMed  Google Scholar 

  31. Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A. & Stickgold, R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35, 205–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Brawn, T. P., Fenn, K. M., Nusbaum, H. C. & Margoliash, D. Consolidating the effects of waking and sleep on motor-sequence learning. J. Neurosci. 30, 13977–13982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. King, B. R., Hoedlmoser, K., Hirschauer, F., Dolfen, N. & Albouy, G. Sleeping on the motor engram: the multifaceted nature of sleep-related motor memory consolidation. Neurosci. Biobehav. Rev. 80, 1–22 (2017).

    Article  PubMed  Google Scholar 

  34. Schapiro, A. C. et al. Sleep benefits memory for semantic category structure while preserving exemplar-specific information. Sci. Rep. 7, 14869 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Andermane, N., Joensen, B. H. & Horner, A. J. Forgetting across a hierarchy of episodic representations. Curr. Opin. Neurobiol. 67, 50–57 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Diamond, N. B., Armson, M. J. & Levine, B. The truth is out there: accuracy in recall of verifiable real-world events. Psychol. Sci. 31, 1544–1556 (2020).

    Article  PubMed  Google Scholar 

  37. Sadeh, T., Ozubko, J. D., Winocur, G. & Moscovitch, M. How we forget may depend on how we remember. Trends Cogn. Sci. 18, 26–36 (2014).

    Article  PubMed  Google Scholar 

  38. Sekeres, M. J. et al. Recovering and preventing loss of detailed memory: differential rates of forgetting for detail types in episodic memory. Learn. Mem. 23, 72–82 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stickgold, R. & Walker, M. P. Sleep-dependent memory triage: evolving generalization through selective processing. Nat. Neurosci. 16, 139–145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Denis, D., Sanders, K. E. G., Kensinger, E. A. & Payne, J. D. Sleep preferentially consolidates negative aspects of human memory: well-powered evidence from two large online experiments. Proc. Natl Acad. Sci. USA 119, e2202657119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Payne, J. D. & Kensinger, E. A. Sleep leads to changes in the emotional memory trace: evidence from fMRI. J. Cogn. Neurosci. 23, 1285–1297 (2011).

    Article  PubMed  Google Scholar 

  42. Payne, J. D. & Kensinger, E. A. Stress, sleep, and the selective consolidation of emotional memories. Curr. Opin. Behav. Sci. 19, 36–43 (2018).

    Article  Google Scholar 

  43. Gilboa, A. & Marlatte, H. Neurobiology of schemas and schema-mediated memory. Trends Cogn. Sci. 21, 618–631 (2017).

    Article  PubMed  Google Scholar 

  44. van Dongen, E. V., Thielen, J.-W., Takashima, A., Barth, M. & Fernández, G. Sleep supports selective retention of associative memories based on relevance for future utilization. PLoS ONE 7, e43426 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Diekelmann, S., Wilhelm, I. & Born, J. The whats and whens of sleep-dependent memory consolidation. Sleep. Med. Rev. 13, 309–321 (2009).

    Article  PubMed  Google Scholar 

  46. Diamond, N. B. & Levine, B. Linking detail to temporal structure in naturalistic-event recall. Psychol. Sci. 31, 1557–1572 (2020).

    Article  PubMed  Google Scholar 

  47. Kim, J. S. & Lee, S. A. Hippocampal orchestration of associative and sequential memory networks for episodic retrieval. Cell Rep. 42, 112989 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. DuBrow, S. & Davachi, L. The influence of context boundaries on memory for the sequential order of events. J. Exp. Psychol. Gen. 142, 1277–1286 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Drieu, C., Todorova, R. & Zugaro, M. Nested sequences of hippocampal assemblies during behavior support subsequent sleep replay. Science 362, 675–679 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Lerner, I. & Gluck, M. A. Sleep and the extraction of hidden regularities: a systematic review and the importance of temporal rules. Sleep. Med. Rev. 47, 39–50 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Drosopoulos, S., Windau, E., Wagner, U. & Born, J. Sleep enforces the temporal order in memory. PLoS ONE 2, e376 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Griessenberger, H. et al. Consolidation of temporal order in episodic memories. Biol. Psychol. 91, 150–155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Diamond, N. B., Abdi, H. & Levine, B. Different patterns of recollection for matched real-world and laboratory-based episodes in younger and older adults. Cognition 202, 104309 (2020).

    Article  PubMed  Google Scholar 

  54. Knötzele, J. et al. Presenting rose odor during learning, sleep and retrieval helps to improve memory consolidation: a real-life study. Sci. Rep. 13, 2371 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Neumann, F., Oberhauser, V. & Kornmeier, J. How odor cues help to optimize learning during sleep in a real life-setting. Sci. Rep. 10, 1227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gilboa, A. & Moscovitch, M. No consolidation without representation: correspondence between neural and psychological representations in recent and remote memory. Neuron 109, 2239–2255 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Tompary, A. & Davachi, L. Consolidation promotes the emergence of representational overlap in the hippocampus and medial prefrontal cortex. Neuron 96, 228–241.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moyer, R. S. & Bayer, R. H. Mental comparison and the symbolic distance effect. Cogn. Psychol. 8, 228–246 (1976).

    Article  Google Scholar 

  59. St. Jacques, P., Rubin, D. C., LaBar, K. S. & Cabeza, R. The short and long of it: neural correlates of temporal-order memory for autobiographical events. J. Cogn. Neurosci. 20, 1327–1341 (2008).

    Article  PubMed Central  Google Scholar 

  60. Wagner, U., Hallschmid, M., Rasch, B. & Born, J. Brief sleep after learning keeps emotional memories alive for years. Biol. Psychiatry 60, 788–790 (2006).

    Article  PubMed  Google Scholar 

  61. Fogel, S. M. & Smith, C. T. Learning-dependent changes in sleep spindles and stage 2 sleep. J. Sleep Res. 15, 250–255 (2006).

    Article  PubMed  Google Scholar 

  62. Gais, S., Mölle, M., Helms, K. & Born, J. Learning-dependent increases in sleep spindle density. J. Neurosci. 22, 6830–6834 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mölle, M., Eschenko, O., Gais, S., Sara, S. J. & Born, J. The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats. Eur. J. Neurosci. 29, 1071–1081 (2009).

    Article  PubMed  Google Scholar 

  64. Fang, Z. et al. Sleep spindles and intellectual ability: epiphenomenon or directly related? J. Cogn. Neurosci. 29, 167–182 (2017).

    Article  PubMed  Google Scholar 

  65. Fang, Z. et al. Sleep spindle-dependent functional connectivity correlates with cognitive abilities. J. Cogn. Neurosci. 32, 446–466 (2020).

    Article  PubMed  Google Scholar 

  66. Fogel, S. M. & Smith, C. T. The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci. Biobehav. Rev. 35, 1154–1165 (2011).

    Article  PubMed  Google Scholar 

  67. Baena, D., Fang, Z., Ray, L. B., Owen, A. M. & Fogel, S. M. Brain activations time locked to slow wave-coupled sleep spindles correlates with intellectual abilities. Cereb. Cortex 33, 5409–5419 (2023).

    Article  PubMed  Google Scholar 

  68. Rihm, J. S., Diekelmann, S., Born, J. & Rasch, B. Reactivating memories during sleep by odors: odor specificity and associated changes in sleep oscillations. J. Cogn. Neurosci. 26, 1806–1818 (2014).

    Article  PubMed  Google Scholar 

  69. Lewis, P. A., Cairney, S., Manning, L. & Critchley, H. D. The impact of overnight consolidation upon memory for emotional and neutral encoding contexts. Neuropsychologia 49, 2619–2629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lutz, N. D., Martínez-Albert, E., Friedrich, H., Born, J. & Besedovsky, L. Sleep shapes the associative structure underlying pattern completion in multielement event memory. Proc. Natl Acad. Sci. USA 121, e2314423121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Diekelmann, S., Büchel, C., Born, J. & Rasch, B. Labile or stable: opposing consequences for memory when reactivated during waking and sleep. Nat. Neurosci. 14, 381–386 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Liu, Y., Dolan, R. J., Kurth-Nelson, Z. & Behrens, T. E. J. Human replay spontaneously reorganizes experience. Cell 178, 640–652.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pfeiffer, B. E. & Foster, D. J. PLACE CELLS. Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science 349, 180–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Diamond, N. B., Romero, K., Jeyakumar, N. & Levine, B. Age-related decline in item but not spatiotemporal associative memory for a real-world event. Psychol. Aging 33, 1079 (2018).

    Article  PubMed  Google Scholar 

  75. Heyworth, N. C. & Squire, L. R. The nature of recollection across months and years and after medial temporal lobe damage. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1820765116 (2019).

  76. Scullin, M. K. Sleep, memory, and aging: the link between slow-wave sleep and episodic memory changes from younger to older adults. Psychol. Aging 28, 105–114 (2013).

    Article  PubMed  Google Scholar 

  77. Helfrich, R. F., Mander, B. A., Jagust, W. J., Knight, R. T. & Walker, M. P. Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron 97, 221–230.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Fogel, S. et al. Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation. Neurobiol. Aging 49, 154–164 (2017).

    Article  PubMed  Google Scholar 

  79. Gerrard, J. L., Burke, S. N., McNaughton, B. L. & Barnes, C. A. Sequence reactivation in the hippocampus is impaired in aged rats. J. Neurosci. 28, 7883–7890 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hanslmayr, S., Axmacher, N. & Inman, C. S. Modulating human memory via entrainment of brain oscillations. Trends Neurosci. 42, 485–499 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Carbone, J. & Diekelmann, S. An update on recent advances in targeted memory reactivation during sleep. npj Sci. Learn. 9, 31 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hu, X., Cheng, L. Y., Chiu, M. H. & Paller, K. A. Promoting memory consolidation during sleep: a meta-analysis of targeted memory reactivation. Psychol. Bull. 146, 218–244 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nicosia, J. & Balota, D. A. Targeted memory reactivation and consolidation-like processes during mind-wandering in younger and older adults. J. Exp. Psychol. Learn. Mem. Cogn. 50, 266–286 (2024).

    Article  PubMed  Google Scholar 

  84. Stanhope, N., Cohen, G. & Conway, M. Very long-term retention of a novel. Appl. Cogn. Psychol. 7, 239–256 (1993).

    Article  Google Scholar 

  85. Foster, D. J. Replay comes of age. Annu. Rev. Neurosci. 40, 581–602 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Buzsáki, G. & Tingley, D. Space and time: the hippocampus as a sequence generator. Trends Cogn. Sci. 22, 853–869 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lisman, J. & Redish, A. D. Prediction, sequences and the hippocampus. Phil. Trans. R. Soc. Lond. B. 364, 1193–1201 (2009).

    Article  Google Scholar 

  88. Braun, E. K., Wimmer, G. E. & Shohamy, D. Retroactive and graded prioritization of memory by reward. Nat. Commun. 9, 4886 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cowan, E. T., Schapiro, A. C., Dunsmoor, J. E. & Murty, V. P. Memory consolidation as an adaptive process. Psychon. Bull. Rev. https://doi.org/10.3758/s13423-021-01978-x (2021).

    Article  PubMed  Google Scholar 

  90. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Behrens, T. E. J. et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Polyn, S. M., Norman, K. A. & Kahana, M. J. A context maintenance and retrieval model of organizational processes in free recall. Psychol. Rev. 116, 129–156 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rowland, C. A. The effect of testing versus restudy on retention: a meta-analytic review of the testing effect. Psychol. Bull. 140, 1432–1463 (2014).

    Article  PubMed  Google Scholar 

  94. Ray, L. B. et al. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization. Front Hum. Neurosci. 9, 507 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article  PubMed  Google Scholar 

  96. Baena, D., Cantero, J. L., Fuentemilla, L. & Atienza, M. Weakly encoded memories due to acute sleep restriction can be rescued after one night of recovery sleep. Sci. Rep. 10, 1449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Baena, D., Cantero, J. L. & Atienza, M. Stability of neural encoding moderates the contribution of sleep and repeated testing to memory consolidation. Neurobiol. Learn Mem. 185, 107529 (2021).

    Article  PubMed  Google Scholar 

  98. Baena, D. et al. Functional differences in cerebral activation between slow wave-coupled and uncoupled sleep spindles. Front. Neurosci. 16, 1090045 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mölle, M., Bergmann, T. O., Marshall, L. & Born, J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep 34, 1411–1421 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Berens, P. CircStat: a MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).

    Article  Google Scholar 

  101. R Core Team (2019) R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/

Download references

Acknowledgements

We thank Y. Levy, L. Levesque, A. Papadopoulos, Y. Wang, C. Le and K. Machlab for technical assistance with designing Baycrest Tour 2.0 and for developing the memory tests; D. Jewell, L. Lu and A. Panopio for their technical assistance with overnight sleep testing; M. Binns for statistical assistance; and L. Ray for support and guidance with the PSG analysis. This project was funded by grants from the Canadian Institutes of Health Research (MOP-148940, awarded to B.L.) and the NSERC Discovery program (RGPIN-2017-04328, awarded to S.F.). N.B.D. was supported by an Ontario Graduate Scholarship. S.S. was supported by a Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarship—Doctoral (PGS-D) and an Early Professionals and Inspired Careers in AgeTech Fellowship. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N.B.D. and S.S. made equal contributions to study conception and design along with the acquisition, analysis and interpretation of data, and writing of the manuscript. D.B. contributed to the analysis of PSG data and manuscript revision. B.M. contributed to study design, data acquisition and interpretation, and manuscript revision. S.F. contributed to data analysis and interpretation and manuscript revision. B.L. contributed to study conception and design, the acquisition and interpretation of data, and writing of the manuscript.

Corresponding author

Correspondence to B. Levine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results, Tables 1–5, Figures 1–6, and References.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diamond, N.B., Simpson, S., Baena, D. et al. Sleep selectively and durably enhances memory for the sequence of real-world experiences. Nat Hum Behav 9, 746–757 (2025). https://doi.org/10.1038/s41562-025-02117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-025-02117-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing