Abstract
The rapid shifts in society have altered human behavioural patterns, with increased evening activities, increased screen time and changed sleep schedules. As an explicit manifestation of circadian rhythms, chronotype is closely intertwined with physical and mental health. Night owls often exhibit unhealthier lifestyle habits, are more susceptible to mood disorders and have poorer physical fitness compared with early risers. Although individual differences in chronotype yield varying consequences, their neurobiological underpinnings remain elusive. Here we conducted a pattern-learning analysis with three brain-imaging modalities (grey matter volume, white-matter integrity and functional connectivity) and capitalized on 976 phenotypes in 27,030 UK Biobank participants. The resulting multilevel analysis reveals convergence on the basal ganglia, limbic system, hippocampus and cerebellum. The pattern derived from modelling actigraphy wearables data of daily movement further highlighted these key brain features. Overall, our population-level study comprehensively investigates chronotype, emphasizing its close connections with habit formation, reward processing and emotional regulation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The UK Biobank data are available to other investigators online (https://www.ukbiobank.ac.uk/). The Harvard–Oxford atlas, Probabilistic cerebellar atlas, and Johns Hopkins University atlas are accessible online (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). Source data are provided with this paper.
Code availability
The processing scripts used in this work were written in Python (v.3.8.8) and utilized the following packages: sklearn (1.1.3), numpy (1.23.4), pandas (1.5.1), matplotlib (3.6.2), seaborn (0.12.2), mne (1.4.0) and mne-connectivity (0.5.0). These scripts are publicly accessible in GitHub at https://github.com/dblabs-mcgill-mila/Chronotype_Neurobiological_Basis (ref. 152).
References
Roser, M., Ritchie, H. & Spooner, F. Burden of disease. Our World in Data https://ourworldindata.org/burden-of-disease (2021).
Buijs, R. M., van Eden, C. G., Goncharuk, V. D. & Kalsbeek, A. The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J. Endocrinol. 177, 17–26 (2003).
Kianersi, S. et al. Chronotype, unhealthy lifestyle, and diabetes risk in middle-aged U.S. women. Ann. Intern. Med. https://doi.org/10.7326/M23-0728 (2023).
Morris, C. J., Purvis, T. E., Hu, K. & Scheer, F. A. J. L. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc. Natl Acad. Sci. USA 113, E1402–E1411 (2016).
Nikbakhtian, S. et al. Accelerometer-derived sleep onset timing and cardiovascular disease incidence: a UK Biobank cohort study. Eur. Heart J. Digit. Health 2, 658–666 (2021).
Teixeira, G. P. et al. Role of chronotype in dietary intake, meal timing, and obesity: a systematic review. Nutr. Rev. 81, 75–90 (2023).
Logan, R. W. & McClung, C. A. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat. Rev. Neurosci. 20, 49–65 (2019).
Gaspar-Barba, E. et al. Depressive symptomatology is influenced by chronotypes. J. Affect. Disord. 119, 100–106 (2009).
Lyall, L. M. et al. Subjective and objective sleep and circadian parameters as predictors of depression-related outcomes: a machine learning approach in UK Biobank. J. Affect. Disord. https://doi.org/10.1016/j.jad.2023.04.138 (2023).
Vulser, H. et al. Chronotype, longitudinal volumetric brain variations throughout adolescence, and depressive symptom development. J. Am. Acad. Child Adolesc. Psychiatry 62, 48–58 (2023).
Roenneberg, T. What is chronotype? Sleep Biol. Rhythms 10, 75–76 (2012).
Carrier, J. et al. Sex differences in age-related changes in the sleep–wake cycle. Front. Neuroendocrinol. 47, 66–85 (2017).
Duarte, L. L. et al. Chronotype ontogeny related to gender. Braz. J. Med. Biol. Res. 47, 316–320 (2014).
Fischer, D., Lombardi, D. A., Marucci-Wellman, H. & Roenneberg, T. Chronotypes in the US—influence of age and sex. PLoS ONE 12, e0178782 (2017).
Randler, C. Gender differences in morningness–eveningness assessed by self-report questionnaires: a meta-analysis. Pers. Individ. Dif. 43, 1667–1675 (2007).
Randler, C. & Engelke, J. Gender differences in chronotype diminish with age: a meta-analysis based on morningness/chronotype questionnaires. Chronobiol. Int. 36, 888–905 (2019).
Wittmann, M., Dinich, J., Merrow, M. & Roenneberg, T. Social jetlag: misalignment of biological and social time. Chronobiol. Int. 23, 497–509 (2006).
Azad-Marzabadi, E. & Amiri, S. Morningness–eveningness and emotion dysregulation incremental validity in predicting social anxiety dimensions. Int. J. Gen. Med. 10, 275–279 (2017).
Salehinejad, M. A. et al. Cognitive functions and underlying parameters of human brain physiology are associated with chronotype. Nat. Commun. 12, 4672 (2021).
Taylor, B. J. et al. Evening chronotype, alcohol use disorder severity, and emotion regulation in college students. Chronobiol. Int. 37, 1725–1735 (2020).
Zou, H., Zhou, H., Yan, R., Yao, Z. & Lu, Q. Chronotype, circadian rhythm, and psychiatric disorders: recent evidence and potential mechanisms. Front. Neurosci. 16, 811771 (2022).
Taylor, B. J. & Hasler, B. P. Chronotype and mental health: recent advances. Curr. Psychiatry Rep. 20, 59 (2018).
Fossum, I. N., Nordnes, L. T., Storemark, S. S., Bjorvatn, B. & Pallesen, S. The association between use of electronic media in bed before going to sleep and insomnia symptoms, daytime sleepiness, morningness, and chronotype. Behav. Sleep Med. 12, 343–357 (2014).
Grønli, J. et al. Reading from an iPad or from a book in bed: the impact on human sleep. A randomized controlled crossover trial. Sleep Med. 21, 86–92 (2016).
Monsivais, D., Ghosh, A., Bhattacharya, K., Dunbar, R. I. M. & Kaski, K. Tracking urban human activity from mobile phone calling patterns. PLoS Comput. Biol. 13, e1005824 (2017).
Hasler, B. P. Chronotype and mental health: timing seems to matter, but how, why, and for whom? World Psychiatry 22, 329–330 (2023).
Rosenberg, J., Jacobs, H. I. L., Maximov, I. I., Reske, M. & Shah, N. J. Chronotype differences in cortical thickness: grey matter reflects when you go to bed. Brain Struct. Funct. 223, 3411–3421 (2018).
Takeuchi, H. et al. Regional gray matter density is associated with morningness–eveningness: evidence from voxel-based morphometry. NeuroImage 117, 294–304 (2015).
Horne, C. M. & Norbury, R. Exploring the effect of chronotype on hippocampal volume and shape: a combined approach. Chronobiol. Int. 35, 1027–1033 (2018).
Schiel, J. E. et al. Associations between sleep health and grey matter volume in the UK Biobank cohort (n = 33 356). Brain Commun. 5, fcad200 (2023).
Rosenberg, J., Maximov, I. I., Reske, M., Grinberg, F. & Shah, N. J. "Early to bed, early to rise": diffusion tensor imaging identifies chronotype-specificity. NeuroImage 84, 428–434 (2014).
Hasler, B. P., Sitnick, S. L., Shaw, D. S. & Forbes, E. E. An altered neural response to reward may contribute to alcohol problems among late adolescents with an evening chronotype. Psychiatry Res. 214, 357–364 (2013).
Horne, C. M. & Norbury, R. Late chronotype is associated with enhanced amygdala reactivity and reduced fronto-limbic functional connectivity to fearful versus happy facial expressions. NeuroImage 171, 355–363 (2018).
Reske, M., Rosenberg, J., Plapp, S., Kellermann, T. & Jon Shah, N. fMRI identifies chronotype-specific brain activation associated with attention to motion—why we need to know when subjects go to bed. NeuroImage 111, 602–610 (2015).
Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilistic MR atlas of the human cerebellum. NeuroImage 46, 39–46 (2009).
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).
Frazier, J. A. et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am. J. Psychiatry 162, 1256–1265 (2005).
Goldstein, J. M. et al. Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol. Psychiatry 61, 935–945 (2007).
Makris, N. et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res. 83, 155–171 (2006).
Kernbach, J. M. et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc. Natl Acad. Sci. USA 115, 12295–12300 (2018).
Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).
Schmahmann, J. D. & Pandya, D. N. Fiber Pathways of the Brain (Oxford Univ. Press, 2006).
Levandovski, R., Sasso, E. & Hidalgo, M. P. Chronotype: a review of the advances, limits and applicability of the main instruments used in the literature to assess human phenotype. Trends Psychiatry Psychother. 35, 3–11 (2013).
Roenneberg, T. & Merrow, M. Entrainment of the human circadian clock. Cold Spring Harb. Symp. Quant. Biol. 72, 293–299 (2007).
Allebrandt, K. V. et al. Chronotype and sleep duration: the influence of season of assessment. Chronobiol. Int. 31, 731–740 (2014).
Juda, M., Vetter, C. & Roenneberg, T. Chronotype modulates sleep duration, sleep quality, and social jet lag in shift-workers. J. Biol. Rhythms 28, 141–151 (2013).
Kahn, M., Sheppes, G. & Sadeh, A. Sleep and emotions: bidirectional links and underlying mechanisms. Int. J. Psychophysiol. 89, 218–228 (2013).
Creswell, J. D. et al. Nightly sleep duration predicts grade point average in the first year of college. Proc. Natl Acad. Sci. USA 120, e2209123120 (2023).
Bauducco, S., Richardson, C. & Gradisar, M. Chronotype, circadian rhythms and mood. Curr. Opin. Psychol. 34, 77–83 (2020).
Kivelä, L., Papadopoulos, M. R. & Antypa, N. Chronotype and psychiatric disorders. Curr. Sleep Med. Rep. 4, 94–103 (2018).
Wittmann, M., Paulus, M. & Roenneberg, T. Decreased psychological well-being in late ‘chronotypes’ is mediated by smoking and alcohol consumption. Subst. Use Misuse 45, 15–30 (2010).
Montaruli, A. et al. Biological rhythm and chronotype: new perspectives in health. Biomolecules 11, 487 (2021).
Hublin, C. & Kaprio, J. Chronotype and mortality—a 37-year follow-up study in Finnish adults. Chronobiol. Int. 40, 841–849 (2023).
Monk, T. H., Buysse, D. J., Potts, J. M., DeGrazia, J. M. & Kupfer, D. J. Morningness-eveningness and lifestyle regularity. Chronobiol. Int. 21, 435–443 (2004).
Merikanto, I., Kuula, L., Lahti, J., Räikkönen, K. & Pesonen, A.-K. Eveningness associates with lower physical activity from pre- to late adolescence. Sleep Med. 74, 189–198 (2020).
Gremel, C. M. & Costa, R. M. Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat. Commun. 4, 2264 (2013).
Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476 (2006).
Dedovic, K., Duchesne, A., Andrews, J., Engert, V. & Pruessner, J. C. The brain and the stress axis: the neural correlates of cortisol regulation in response to stress. NeuroImage 47, 864–871 (2009).
Niu, H. et al. The impact of butylphthalide on the hypothalamus-pituitary-adrenal axis of patients suffering from cerebral infarction in the basal ganglia. Electron. Physician 8, 1759–1763 (2016).
Randler, C. & Schaal, S. Morningness–eveningness, habitual sleep-wake variables and cortisol level. Biol. Psychol. 85, 14–18 (2010).
Schwabe, L. & Wolf, O. T. Stress prompts habit behavior in humans. J. Neurosci. 29, 7191–7198 (2009).
Fournier, M. et al. Effects of circadian cortisol on the development of a health habit. Health Psychol. 36, 1059–1064 (2017).
Di Chiara, G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav. Brain Res. 137, 75–114 (2002).
Wise, R. A. Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox. Res. 14, 169–183 (2008).
Kahnt, T., Heinzle, J., Park, S. Q. & Haynes, J.-D. The neural code of reward anticipation in human orbitofrontal cortex. Proc. Natl Acad. Sci. USA 107, 6010–6015 (2010).
Rolls, E. T. & Grabenhorst, F. The orbitofrontal cortex and beyond: from affect to decision-making. Prog. Neurobiol. 86, 216–244 (2008).
Stalnaker, T. A., Cooch, N. K. & Schoenbaum, G. What the orbitofrontal cortex does not do. Nat. Neurosci. 18, 620–627 (2015).
Howard, J. D. & Kahnt, T. To be specific: the role of orbitofrontal cortex in signaling reward identity. Behav. Neurosci. 135, 210–217 (2021).
Franklin, T. R. et al. Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol. Psychiatry 51, 134–142 (2002).
Goldstein, R. Z. et al. Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience 144, 1153–1159 (2007).
Volkow, N. D. & Fowler, J. S. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb. Cortex 10, 318–325 (2000).
Menzies, L. et al. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci. Biobehav. Rev. 32, 525–549 (2008).
Nakao, T., Okada, K. & Kanba, S. Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin. Neurosci. 68, 587–605 (2014).
Cheng, W. et al. Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression. Brain 139, 3296–3309 (2016).
Drevets, W. C. Orbitofrontal cortex function and structure in depression. Ann. N. Y. Acad. Sci. 1121, 499–527 (2007).
Watts, A. L. & Norbury, R. Reduced effective emotion regulation in night owls. J. Biol. Rhythms 32, 369–375 (2017).
Kringelbach, M. L. & Rolls, E. T. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 72, 341–372 (2004).
Rajmohan, V. & Mohandas, E. The limbic system. Indian J. Psychiatry 49, 132–139 (2007).
Rolls, E. T. Limbic systems for emotion and for memory, but no single limbic system. Cortex 62, 119–157 (2015).
Rudebeck, P. H. et al. A role for primate subgenual cingulate cortex in sustaining autonomic arousal. Proc. Natl Acad. Sci. USA 111, 5391–5396 (2014).
Golkar, A. et al. Distinct contributions of the dorsolateral prefrontal and orbitofrontal cortex during emotion regulation. PLoS ONE 7, e48107 (2012).
Mitchell, M. R. & Potenza, M. N. Recent insights into the neurobiology of impulsivity. Curr. Addict. Rep. 1, 309–319 (2014).
Marek, R., Strobel, C., Bredy, T. W. & Sah, P. The amygdala and medial prefrontal cortex: partners in the fear circuit. J. Physiol. 591, 2381–2391 (2013).
Sotres-Bayon, F., Bush, D. E. A. & LeDoux, J. E. Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. Learn. Mem. 11, 525–535 (2004).
Nummenmaa, L. et al. Adult attachment style is associated with cerebral μ-opioid receptor availability in humans. Hum. Brain Mapp. 36, 3621–3628 (2015).
Alexander, L., Clarke, H. F. & Roberts, A. C. A focus on the functions of area 25. Brain Sci. 9, 129 (2019).
Hamani, C. et al. The subcallosal cingulate gyrus in the context of major depression. Biol. Psychiatry 69, 301–308 (2011).
Laxton, A. W. et al. Neuronal coding of implicit emotion categories in the subcallosal cortex in patients with depression. Biol. Psychiatry 74, 714–719 (2013).
Freedman, L. J., Insel, T. R. & Smith, Y. Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J. Comp. Neurol. 421, 172–188 (2000).
Öngür, D., An, X. & Price, J. L. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J. Comp. Neurol. 401, 480–505 (1998).
Campbell, S. & MacQueen, G. The role of the hippocampus in the pathophysiology of major depression. J. Psychiatry Neurosci. 29, 417–426 (2004).
Sheline, Y. I., Liston, C. & McEwen, B. S. Parsing the hippocampus in depression: chronic stress, hippocampal volume, and major depressive disorder. Biol. Psychiatry 85, 436–438 (2019).
Benear, S. L., Ngo, C. T. & Olson, I. R. Dissecting the fornix in basic memory processes and neuropsychiatric disease: a review. Brain Connect. 10, 331–354 (2020).
Williams, A. N. et al. The role of the pre-commissural fornix in episodic autobiographical memory and simulation. Neuropsychologia 142, 107457 (2020).
Lazarus, M., Chen, J.-F., Urade, Y. & Huang, Z.-L. Role of the basal ganglia in the control of sleep and wakefulness. Curr. Opin. Neurobiol. 23, 780–785 (2013).
Chen, C.-H., Suckling, J., Lennox, B. R., Ooi, C. & Bullmore, E. T. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord. 13, 1–15 (2011).
Phillips, M. L., Drevets, W. C., Rauch, S. L. & Lane, R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol. Psychiatry 54, 504–514 (2003).
Phillips, M. L., Ladouceur, C. D. & Drevets, W. C. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol. Psychiatry 13, 833–857 (2008).
Arsalidou, M., Duerden, E. G. & Taylor, M. J. The centre of the brain: topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia. Hum. Brain Mapp. https://doi.org/10.1002/hbm.22124 (2013).
Bennett, M. R. The prefrontal–limbic network in depression: modulation by hypothalamus, basal ganglia and midbrain. Prog. Neurobiol. 93, 468–487 (2011).
Herman, J. P., Ostrander, M. M., Mueller, N. K. & Figueiredo, H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1201–1213 (2005).
Liljeholm, M., Dunne, S. & O’Doherty, J. P. Differentiating neural systems mediating the acquisition vs. expression of goal-directed and habitual behavioral control. Eur. J. Neurosci. 41, 1358–1371 (2015).
Miquel, M., Nicola, S. M., Gil-Miravet, I., Guarque-Chabrera, J. & Sanchez-Hernandez, A. A working hypothesis for the role of the cerebellum in impulsivity and compulsivity. Front. Behav. Neurosci. 13, 99 (2019).
Ramnani, N. in Progress in Brain Research Vol. 210 (ed. Ramnani, N.) 255–285 (Elsevier, 2014).
Leggio, M. & Olivito, G. in Handbook of Clinical Neurology Vol. 154 (eds Manto, M. & Huisman, T. A. G. M.) 71–84 (Elsevier, 2018).
Ramnani, N., Elliott, R., Athwal, B. S. & Passingham, R. E. Prediction error for free monetary reward in the human prefrontal cortex. NeuroImage 23, 777–786 (2004).
Canto, C. B., Onuki, Y., Bruinsma, B., Werf, Y. D. V. D. & Zeeuw, C. I. D. The sleeping cerebellum. Trends Neurosci. 40, 309–323 (2017).
de Andrés, I., Garzón, M. & Reinoso-Suárez, F. Functional anatomy of non-REM sleep. Front. Neurol. 2, 70 (2011).
Hashimoto, M. et al. Anatomical evidence for a direct projection from Purkinje cells in the mouse cerebellar vermis to medial parabrachial nucleus. Front. Neural Circuits 12, 6 (2018).
DelRosso, L. M. & Hoque, R. The cerebellum and sleep. Neurol. Clin. 32, 893–900 (2014).
Pedroso, J. L. et al. Sleep disorders in cerebellar ataxias. Arq. Neuropsiquiatr. 69, 253–257 (2011).
Pierce, J. E. & Péron, J. The basal ganglia and the cerebellum in human emotion. Soc. Cogn. Affect. Neurosci. 15, 599–613 (2020).
Pierce, J. E. & Péron, J. A. in The Emotional Cerebellum (eds Adamaszek, M. et al.) 125–140 (Springer, 2022).
Doron, K. W., Funk, C. M. & Glickstein, M. Fronto-cerebellar circuits and eye movement control: a diffusion imaging tractography study of human cortico-pontine projections. Brain Res. 1307, 63–71 (2010).
Lee, S.-K. et al. Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in developmental CNS anomalies. RadioGraphics https://doi.org/10.1148/rg.251045085 (2005).
Lotze, M. et al. Novel findings from 2,838 adult brains on sex differences in gray matter brain volume. Sci. Rep. 9, 1671 (2019).
Goldstein, J. M., Jerram, M., Abbs, B., Whitfield-Gabrieli, S. & Makris, N. Sex differences in stress response circuitry activation dependent on female hormonal cycle. J. Neurosci. 30, 431–438 (2010).
Welborn, B. L. et al. Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect. Soc. Cogn. Affect. Neurosci. 4, 328–339 (2009).
Kiesow, H. et al. 10,000 social brains: sex differentiation in human brain anatomy. Sci. Adv. 6, eaaz1170 (2020).
Orban, C., Kong, R., Li, J., Chee, M. W. L. & Yeo, B. T. T. Time of day is associated with paradoxical reductions in global signal fluctuation and functional connectivity. PLoS Biol. 18, e3000602 (2020).
Vaisvilaite, L., Hushagen, V., Gronli, J. & Specht, K. Time-of-day effects in resting-state functional magnetic resonance imaging: changes in effective connectivity and blood oxygenation level dependent signal. Brain Connect. 12, 515–523 (2022).
Preckel, F., Lipnevich, A. A., Schneider, S. & Roberts, R. D. Chronotype, cognitive abilities, and academic achievement: a meta-analytic investigation. Learn. Individ. Differ. 21, 483–492 (2011).
Wang, J. et al. Chronotype and cognitive function: observational study and bidirectional Mendelian randomization. EClinicalMedicine 53, 101713 (2022).
West, R. et al. Sleep duration, chronotype, health and lifestyle factors affect cognition: a UK Biobank cross-sectional study. BMJ Public Health 2, e001000 (2024).
Thun, E. et al. An actigraphic validation study of seven morningness-eveningness inventories. Eur. Psychol. 17, 222–230 (2012).
Gershon, A. et al. Subjective versus objective evening chronotypes in bipolar disorder. J. Affect. Disord. 225, 342–349 (2018).
Schneider, J., Fárková, E. & Bakštein, E. Human chronotype: comparison of questionnaires and wrist-worn actigraphy. Chronobiol. Int. 39, 205–220 (2022).
Cliff, N. Dominance statistics: ordinal analyses to answer ordinal questions. Psychol. Bull. 114, 494–509 (1993).
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 2013).
Kopal, J. et al. Rare CNVs and phenome-wide profiling highlight brain structural divergence and phenotypical convergence. Nat. Hum. Behav. 7, 1001–1017 (2023).
Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 166, 400–424 (2018).
Hua, K. et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. NeuroImage 39, 336–347 (2008).
Mori, S. & van Zijl, P. Human white matter atlas. Am. J. Psychiatry 164, 1005 (2007).
Wakana, S. et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage 36, 630–644 (2007).
Spreng, R. N. et al. The default network of the human brain is associated with perceived social isolation. Nat. Commun. 11, 6393 (2020).
Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).
Sun, J. et al. Chronotype: implications for sleep quality in medical students. Chronobiol. Int. 36, 1115–1123 (2019).
Wang, H. et al. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun. 10, 3503 (2019).
Doherty, A. et al. Large scale population assessment of physical activity using wrist worn accelerometers: the UK Biobank Study. PLoS ONE 12, e0169649 (2017).
Jones, S. E. et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 10, 343 (2019).
Saltoun, K. et al. Dissociable brain structural asymmetry patterns reveal unique phenome-wide profiles. Nat. Hum. Behav. 7, 251–268 (2023).
Noonan, M., Zajner, C. & Bzdok, D. Home alone: a population neuroscience investigation of brain morphology substrates. NeuroImage 269, 119936 (2023).
Bzdok, D. & Ioannidis, J. P. A. Exploration, inference, and prediction in neuroscience and biomedicine. Trends Neurosci. 42, 251–262 (2019).
Bzdok, D., Nichols, T. E. & Smith, S. M. Towards algorithmic analytics for large-scale datasets. Nat. Mach. Intell. 1, 296–306 (2019).
Bzdok, D. & Yeo, B. T. T. Inference in the age of big data: future perspectives on neuroscience. NeuroImage 155, 549–564 (2017).
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2009).
Bzdok, D. Classical statistics and statistical learning in imaging neuroscience. Front. Neurosci. 11, 543 (2017).
McIntosh, A. R. & Lobaugh, N. J. Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage 23, S250–S263 (2004).
Schurz, M. et al. Variability in brain structure and function reflects lack of peer support. Cereb. Cortex 31, 4612–4627 (2021).
Zajner, C., Spreng, R. N. & Bzdok, D. Loneliness is linked to specific subregional alterations in hippocampus-default network covariation. J. Neurophysiol. 126, 2138–2157 (2021).
Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman and Hall/CRC, 1994).
Le Zhou. Chronotype Neurobiological Basis. GitHub https://github.com/dblabs-mcgill-mila/Chronotype_Neurobiological_Basis (2025).
Acknowledgements
D.B. was supported by the Brain Canada Foundation through the Canada Brain Research Fund, with the financial support of Health Canada, the National Institutes of Health (NIH R01 AG068563A, NIH R01 DA053301-01A1 and NIH R01 MH129858-01A1), the Canadian Institute of Health Research (CIHR 438531 and CIHR 470425), the Healthy Brains Healthy Lives initiative (Canada First Research Excellence fund), Google (Research Award, Teaching Award), and by the CIFAR Artificial Intelligence Chairs programme (Canada Institute for Advanced Research). L.Z. was funded by the China Scholarship Council (CSC: 202106070134). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
D.B. and L.Z. conceived and executed the project, and wrote the paper. K.S., J.C., K.-F.S. and R.I.M.D. contributed to the analysis and interpretation of the data, as well as revision of the paper. D.B. led data analytics.
Corresponding author
Ethics declarations
Competing interests
D.B. is a shareholder and advisory board member of MindState Design Labs, USA. The other authors declare no competing interests.
Peer review
Peer review information
Nature Human Behaviour thanks Jonas Obleser, Meenakshi Sinha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–3, analysis and Tables 1–5.
Supplementary Table 1
The data fields from the UK Biobank utilized in the current study.
Source data
Source Data Fig. 1
PheWAS statistical source data.
Source Data Fig. 2
LDA coefficients for sMRI and dMRI.
Source Data Fig. 3
LDA coefficients for resting-state fMRI.
Source Data Fig. 4
LDA coefficients for sex differences.
Source Data Fig. 5
Brain loadings, actigraphy loadings and y scores.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhou, L., Saltoun, K., Carrier, J. et al. Multimodal population study reveals the neurobiological underpinnings of chronotype. Nat Hum Behav 9, 1442–1456 (2025). https://doi.org/10.1038/s41562-025-02182-w
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41562-025-02182-w