Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Knowledge of information cascades through social networks facilitates strategic gossip

Abstract

Social networks are composed of many ties among many individuals. These ties enable the spread of information through a network, including gossip, which comprises a sizeable share of daily conversation. Given the number of possible connections between people in even the smallest networks, a formidable challenge is how to strategically gossip—to disseminate information as widely as possible without the target of the gossip finding out. Here we find that people achieve this goal by leveraging knowledge about topological properties, specifically, social distance and popularity, using a gossip-sharing task in artificial social networks (experiments 1–3, N = 568). We find a similar pattern of behaviour in a real-world social network (experiment 4, N = 187), revealing the power of these topological properties in predicting information flow, even in much noisier, complex environments. Computational modelling suggests that these adaptive social behaviours rely on mental representations of information cascades through the social network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Network and task structure used in online experiments.
Fig. 2: Likelihood of gossiping in experiments 1 and 2.
Fig. 3: Likelihood of gossiping in experiment 3.
Fig. 4: Predictions about information flow in a large, real-world social network (experiment 4).
Fig. 5: Computational modelling results.

Similar content being viewed by others

Data availability

The deidentified data are publicly available at https://osf.io/4kbsj/. The stimuli used in the artificial social networks were sources from the Chicago Face Database available at https://www.chicagofaces.org/.

Code availability

The code for reproducing analyses is publicly available at https://osf.io/4kbsj/.

References

  1. Cruz, T. D. D., Nieper, A. S., Testori, M., Martinescu, E. & Beersma, B. An integrative definition and framework to study gossip. Group Organ. Manag. 46, 252–285 (2021).

    Article  Google Scholar 

  2. Feinberg, M., Willer, R. & Schultz, M. Gossip and ostracism promote cooperation in groups. Psychol. Sci. 25, 656–664 (2013).

    Article  Google Scholar 

  3. Sommerfeld, R. D., Krambeck, H.-J. & Milinski, M. Multiple gossip statements and their effect on reputation and trustworthiness. Proc. R. Soc. B 275, 2529–2536 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Blumberg, H. H. Communication of interpersonal evaluations. J. Pers. Soc. Psychol. 23, 157–162 (1972).

    Article  Google Scholar 

  5. Grosser, T. J., Lopez-Kidwell, V., Labianca, G. J. & Ellwardt, L. Hearing it through the grapevine positive and negative workplace gossip. Organ. Dyn. 41, 52–61 (2012).

    Article  Google Scholar 

  6. Ellwardt, L., Labianca, G. J. & Wittek, R. Who are the objects of positive and negative gossip at work? A social network perspective on workplace gossip. Soc. Netw. 34, 193–205 (2012).

    Article  Google Scholar 

  7. Robbins, M. L. & Karan, A. Who gossips and how in everyday life? Soc. Psychol. Pers. Sci. 11, 185–195 (2020).

    Article  Google Scholar 

  8. Molho, C., Tybur, J. M., Lange, P. A. M. V. & Balliet, D. Direct and indirect punishment of norm violations in daily life. Nat. Commun. 11, 3432 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu, J., Balliet, D. & Lange, P. A. M. V. Gossip versus punishment: the efficiency of reputation to promote and maintain cooperation. Sci. Rep. 6, 23919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, J., Balliet, D. & Lange, P. A. M. V. Reputation, gossip, and human cooperation. Soc. Pers. Psychol. Compass 10, 350–364 (2016).

    Article  Google Scholar 

  11. Ellwardt, L., Steglich, C. & Wittek, R. The co-evolution of gossip and friendship in workplace social networks. Soc. Netw. 34, 623–633 (2012).

    Article  Google Scholar 

  12. Hess, N. H. & Hagen, E. H. Gossip, reputation, and friendship in within-group competition. In The Oxford Handbook of Gossip and Reputation (eds Giardini, F. & Wittek, R.) 274–302 (Oxford University Press, 2019); https://doi.org/10.1093/oxfordhb/9780190494087.013.15

  13. Tassiello, V., Lombardi, S. & Costabile, M. Are we truly wicked when gossiping at work? The role of valence, interpersonal closeness and social awareness. J. Bus. Res. 84, 141–149 (2018).

    Article  Google Scholar 

  14. Burt, R. S. & Knez, M. Kinds of third-party effects on trust. Ration. Soc. 7, 255–292 (1995).

    Article  Google Scholar 

  15. Grosser, T. J., Lopez-Kidwell, V. & Labianca, G. A social network analysis of positive and negative gossip in organizational life. Group Organ Manag. 35, 177–212 (2010).

    Article  Google Scholar 

  16. Carrasco, J. A., Miller, E. J. & Wellman, B. How far and with whom do people socialize? Transp. Res Rec. 2076, 114–122 (2008).

    Article  Google Scholar 

  17. Wu, J., Balliet, D. & Lange, P. A. M. V. Reputation management: why and how gossip enhances generosity. Evol. Hum. Behav. 37, 193–201 (2016).

    Article  Google Scholar 

  18. Newman, M. E. J. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).

    Article  Google Scholar 

  19. Kleinberg, J. M. Navigation in a small world. Nature 406, 845–845 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  PubMed  Google Scholar 

  21. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Freeman, J. B. & Ambady, N. A dynamic interactive theory of person construal. Psychol. Rev. 118, 247–279 (2011).

    Article  PubMed  Google Scholar 

  23. Ambady, N. & Rosenthal, R. Thin slices of expressive behavior as predictors of interpersonal consequences: a meta-analysis. Psychol. Bull. 111, 256–274 (1992).

    Article  Google Scholar 

  24. Rouse, W. B. & Morris, N. M. On looking into the black box: prospects and limits in the search for mental models. Psychol. Bull. 100, 349–363 (1986).

    Article  Google Scholar 

  25. Sweller, J. Cognitive load during problem solving: effects on learning. Cogn. Sci. 12, 257–285 (1988).

    Article  Google Scholar 

  26. Parkinson, C., Kleinbaum, A. M. & Wheatley, T. Spontaneous neural encoding of social network position. Nat. Hum. Behav. 1, 0072 (2017).

    Article  Google Scholar 

  27. Courtney, A. L. & Meyer, M. L. Self-other representation in the social brain reflects social connection. J. Neurosci. Off. J. Soc. Neurosci. 40, 5616–5627 (2020).

    Article  CAS  Google Scholar 

  28. Doll, B. B., Duncan, K. D., Simon, D. A., Shohamy, D. & Daw, N. D. Model-based choices involve prospective neural activity. Nat. Neurosci. 18, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based influences on humans’ choices and striatal prediction errors. Neuron 69, 1204–1215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huys, Q. J. M. et al. Bonsai trees in your head: how the Pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput. Biol. 8, e1002410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drummond, N. & Niv, Y. Model-based decision making and model-free learning. Curr. Biol. 30, R860–R865 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Dayan, P. Improving generalization for temporal difference learning: the successor representation. Neural Comput. 5, 613–624 (1993).

    Article  Google Scholar 

  33. Momennejad, I. et al. The successor representation in human reinforcement learning. Nat. Hum. Behav. 1, 680–692 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Geerts, J. P., Gershman, S. J., Burgess, N. & Stachenfeld, K. L. A Probabilistic Successor Representation for Context-Dependent Learning. Psychol. Rev. https://doi.org/10.1037/rev0000414 (2023).

  35. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Garvert, M. M., Dolan, R. J. & Behrens, T. E. A map of abstract relational knowledge in the human hippocampal–entorhinal cortex. eLife 6, e17086 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Son, J.-Y., Bhandari, A. & FeldmanHall, O. Cognitive maps of social features enable flexible inference in social networks. Proc. Natl Acad. Sci. USA 118, e2021699118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Son, J.-Y., Vives, M.-L., Bhandari, A. & FeldmanHall, O. Replay shapes abstract cognitive maps for efficient social navigation. Nat. Hum. Behav. 8, 2156–2167 (2024).

    Article  PubMed  Google Scholar 

  39. Momennejad, I. Learning structures: predictive representations, replay, and generalization. Curr. Opin. Behav. Sci. 32, 155–166 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Behrens, T. E. J. et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Zamora-López, G. & Gilson, M. An integrative dynamical perspective for graph theory and the analysis of complex networks. Chaos Interdiscip. J. Nonlinear Sci. 34, 041501 (2024).

    Article  Google Scholar 

  42. Baumeister, R. F., Zhang, L. & Vohs, K. D. Gossip as cultural learning. Rev. Gen. Psychol. 8, 111–121 (2003).

    Article  Google Scholar 

  43. Jolly, E. & Chang, L. J. Gossip drives vicarious learning and facilitates social connection. Curr. Biol. 31, 2539–2549.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Thornborrow, J. & Morris, D. Gossip as strategy: the management of talk about others on reality TV show ‘Big Brother’. J. Socioling. 8, 246–271 (2004).

    Article  Google Scholar 

  45. McAndrew, F. T., Bell, E. K. & Garcia, C. M. Who do we tell and whom do we tell on? Gossip as a strategy for status enhancement. J. Appl. Soc. Psychol. 37, 1562–1577 (2007).

    Article  Google Scholar 

  46. Besnier, N. Information withholding as a manipulative and collusive strategy in Nukulaelae gossip*. Lang. Soc. 18, 315–341 (1989).

    Article  Google Scholar 

  47. Wu, J. et al. Honesty and dishonesty in gossip strategies: a fitness interdependence analysis. Philos. Trans. R. Soc. B 376, 20200300 (2021).

    Article  Google Scholar 

  48. Cruz, T. D. D., Beersma, B., Dijkstra, M. T. M. & Bechtoldt, M. N. The bright and dark side of gossip for cooperation in groups. Front. Psychol. 10, 1374 (2019).

    Article  Google Scholar 

  49. Pan, X., Hsiao, V., Nau, D. S. & Gelfand, M. J. Explaining the evolution of gossip. Proc. Natl Acad. Sci. 121, e2214160121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fonseca, M. A. & Peters, K. Will any gossip do? Gossip does not need to be perfectly accurate to promote trust. Games Econ. Behav. 107, 253–281 (2018).

    Article  Google Scholar 

  51. Dunbar, R. I. M. Gossip in evolutionary perspective. Rev. Gen. Psychol. 8, 100–110 (2004).

    Article  Google Scholar 

  52. Balliet, D., Molho, C., Columbus, S. & Cruz, T. D. D. Prosocial and punishment behaviors in everyday life. Curr. Opin. Psychol. 43, 278–283 (2022).

    Article  PubMed  Google Scholar 

  53. Giardini, F. & Wittek, R. P. M. Silence is golden. Six reasons inhibiting the spread of third-party gossip. Front. Psychol. 10, 1120 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Granovetter, M. S. The strength of weak ties. Am. J. Socio. 78, 1360–1380 (1973).

    Article  Google Scholar 

  55. Milgram, S. The small-world problem. Psychol. Today 1, 61–67 (1967).

    Google Scholar 

  56. Borgatti, S. P. Centrality and network flow. Soc. Netw. 27, 55–71 (2005).

    Article  Google Scholar 

  57. Borgatti, S. P., Mehra, A., Brass, D. J. & Labianca, G. Network analysis in the social sciences. Science 323, 892–895 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Burt, R. S. The network structure of social capital. Res. Organ. Behav. 22, 345–423 (2000).

    Google Scholar 

  59. Banerjee, A., Chandrasekhar, A. G., Duflo, E. & Jackson, M. O. The diffusion of microfinance. Science 341, 1236498 (2013).

    Article  PubMed  Google Scholar 

  60. Couzin, I. D. Collective cognition in animal groups. Trends Cogn. Sci. 13, 36–43 (2009).

    Article  PubMed  Google Scholar 

  61. Chen, X. et al. Prediction of retweet cascade size over time. in Proc. 21st ACM International Conference on Information and Knowledge Management 2335–2338 (2012); https://doi.org/10.1145/2396761.2398634

  62. Bikhchandani, S., Hirshleifer, D. & Welch, I. A theory of fads, fashion, custom, and cultural change as informational cascades. J. Political Econ. 100, 992–1026 (1992).

    Article  Google Scholar 

  63. Breza, E., Chandrasekhar, A. G. & Tahbaz-Salehi, A. Seeing the Forest for the Trees? An Investigation of Network Knowledge. NBER Working Paper No. 24359 (National Bureau of Economic Research, 2018); https://doi.org/10.3386/w24359

  64. Bloch, F., Jackson, M. O. & Tebaldi, P. Centrality measures in networks. Soc. Choice Welf. 61, 413–453 (2023).

    Article  Google Scholar 

  65. Delvenne, J.-C., Lambiotte, R. & Rocha, L. E. C. Diffusion on networked systems is a question of time or structure. Nat. Commun. 6, 7366 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Katz, L. A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953).

    Article  Google Scholar 

  67. Newman, M. E. J. & Park, J. Why social networks are different from other types of networks. Phys. Rev. E 68, 036122 (2003).

    Article  CAS  Google Scholar 

  68. Ma, D. S., Correll, J. & Wittenbrink, B. The Chicago face database: a free stimulus set of faces and norming data. Behav. Res. Methods 47, 1122–1135 (2015).

    Article  PubMed  Google Scholar 

  69. Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378 (2017).

    Article  Google Scholar 

  70. Benzi, M. & Klymko, C. Total communicability as a centrality measure. J. Complex Netw. 1, 124–149 (2013).

    Article  Google Scholar 

  71. Wagenmakers, E.-J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).

    Article  PubMed  Google Scholar 

  72. Rigoux, L., Stephan, K. E., Friston, K. J. & Daunizeau, J. Bayesian model selection for group studies—revisited. NeuroImage 84, 971–985 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Maddah for developing some of the task code used in experiments 1–3. We thank J.-Y. Son and I. Aslarus for assisting with data collection for experiment 4. We also thank J.-Y. Son and Y.-F. Hu for helpful advice and discussions on computational modelling. This work is supported by the National Science Foundation (award 2123469 to O.F.H. and A.B.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and O.F.H. contributed equally to this work. Conceptualization: A.X., A.B. and O.F.H. Formal analysis: A.X. and Y.Y.T. Funding acquisition: O.F.H. Investigation: A.X. Methodology: A.X., Y.Y.T., M.R.N., A.B. and O.F.H. Supervision: O.F.H. and A.B. Writing—original draft: A.X., A.B. and O.F.H. Writing—review and editing: A.X., Y.Y.T., M.R.N., A.B. and O.F.H.

Corresponding author

Correspondence to Oriel FeldmanHall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Terence Dores Cruz, Ari Kahn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Tables 1–14 and methods.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, A., Teoh, Y.Y., Nassar, M.R. et al. Knowledge of information cascades through social networks facilitates strategic gossip. Nat Hum Behav (2025). https://doi.org/10.1038/s41562-025-02241-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-025-02241-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing