Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantifying the impact of hair and skin characteristics on fNIRS signal quality for enhanced inclusivity

Abstract

Functional near-infrared spectroscopy (fNIRS) is a promising neuroimaging method owing to its non-invasive nature and adaptability to real-world settings. However, fNIRS signal quality is sensitive to individual differences in biophysical factors such as hair and skin characteristics, which can considerably impact the absorption and scattering of near-infrared light. If not properly addressed, these factors risk biasing fNIRS research by disproportionately affecting signal quality across diverse populations. Here we quantify the impact of hair properties and skin pigmentation, as well as head size, sex and age, on signal quality in n = 115 individuals. We provide recommendations for fNIRS researchers, including a suggested metadata table and guidance for cap and optode configurations, hair management techniques and strategies to optimize data collection across varied participants. This research will help to guide future hardware advances and methodological standards to overcome barriers to inclusivity in fNIRS studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optode array design, and violin plots illustrating the relationship between hair characteristics and the corrected signal mean on the side and back of the head.
Fig. 2: Violin plots illustrating the relationship between hair characteristics and the corrected signal mean.
Fig. 3: Violin plots illustrating the relationships between skin pigmentation or participant-level factors and corrected signal mean.
Fig. 4: Effect sizes from regression models reveal the contributions of predictor variables to multiple fNIRS signal quality metrics.
Fig. 5: Scatter plot of the uncorrected signal mean in individual channels across all participants versus the combined hair–skin metric.
Fig. 6: Cross-correlation heat map displaying the relationships between various participant-level factors.

Similar content being viewed by others

Data availability

The data used in this study are available via OpenNeuro at https://openneuro.org/datasets/ds006377/.

Code availability

The code used in this study is available via OpenNeuro at https://openneuro.org/datasets/ds006377 in the InclusionStudy/code directory and via GitHub at https://github.com/mayucel/InclusionStudy.

References

  1. Friend, S. H., Ginsburg, G. S. & Picard, R. W. Wearable digital health technology. N. Engl. J. Med. 389, 2100–2101 (2023).

    Article  PubMed  Google Scholar 

  2. Lu, L. et al. Wearable health devices in health care: narrative systematic review. JMIR MHealth UHealth 8, e18907 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boas, D. A., Elwell, C. E., Ferrari, M. & Taga, G. Twenty years of functional near-infrared spectroscopy: introduction for the special issue. NeuroImage 85, 1–5 (2014).

    Article  PubMed  Google Scholar 

  4. Ferrari, M. & Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 63, 921–935 (2012).

    Article  PubMed  Google Scholar 

  5. Yücel, M. A., Selb, J. J., Huppert, T. J., Franceschini, M. A. & Boas, D. A. Functional near infrared spectroscopy: enabling routine functional brain imaging. Curr. Opin. Biomed. Eng. 4, 78–86 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Scholkmann, F. et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage 85, 6–27 (2014).

    Article  PubMed  Google Scholar 

  7. Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A. & Boas, D. A. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. NeuroImage 29, 368–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, H. & Cooper, R. J. Review of recent progress toward a fiberless, whole-scalp diffuse optical tomography system. Neurophotonics 5, 011012 (2018).

    PubMed  Google Scholar 

  9. Pinti, P. et al. A review on the use of wearable functional near-infrared spectroscopy in naturalistic environments: review of fNIRS measurements in naturalistic environments. Jpn Psychol. Res. 60, 347–373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Von Lühmann, A. et al. Toward neuroscience of the everyday world (NEW) using functional near-infrared spectroscopy. Curr. Opin. Biomed. Eng. 18, 100272 (2021).

    Article  Google Scholar 

  11. Kwasa, J. et al. Demographic reporting and phenotypic exclusion in fNIRS. Front. Neurosci. 17, 1086208 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Doherty, E. J. et al. Interdisciplinary views of fNIRS: current advancements, equity challenges, and an agenda for future needs of a diverse fNIRS research community. Front. Integr. Neurosci. 17, 1059679 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wassenaar, E. B. & Van den Brand, J. G. H. Reliability of near-infrared spectroscopy in people with dark skin pigmentation. J. Clin. Monit. Comput. 19, 195–199 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Huang, X., Protheroe, M. D., Al-Jumaily, A. M., Paul, S. P. & Chalmers, A. N. Review of human hair optical properties in possible relation to melanoma development. J. Biomed. Opt. 23, 1–9 (2018).

    Article  PubMed  Google Scholar 

  15. Couch, L., Roskosky, M., Freedman, B. A. & Shuler, M. S. Effect of skin pigmentation on near infrared spectroscopy. Am. J. Anal. Chem. 06, 911–916 (2015).

    Article  CAS  Google Scholar 

  16. Matas, A., Sowa, M. G., Taylor, G. & Mantsch, H. H. Melanin as a confounding factor in near infrared spectroscopy of skin. Vib. Spectrosc. 28, 45–52 (2002).

    Article  CAS  Google Scholar 

  17. Sun, X. et al. Skin pigmentation interferes with the clinical measurement of regional cerebral oxygen saturation. Br. J. Anaesth. 114, 276–280 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Quaresima, V., Ferrari, M. & Scholkmann, F. Ninety years of pulse oximetry: history, current status, and outlook. J. Biomed. Opt. 29, S33307 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jamali, H. et al. Racial disparity in oxygen saturation measurements by pulse oximetry: evidence and implications. Ann. Am. Thorac. Soc. 19, 1951–1964 (2022).

    Article  PubMed  Google Scholar 

  20. Burnett, G. W. et al. Self-reported race/ethnicity and intraoperative occult hypoxemia: a retrospective cohort study. Anesthesiology 136, 688–696 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Saager, R. B. & Berger, A. J. Direct characterization and removal of interfering absorption trends in two-layer turbid media. J. Opt. Soc. Am. A 22, 1874 (2005).

    Article  Google Scholar 

  22. Vasudevan, S., Vogt, W. C., Weininger, S. & Pfefer, T. J. Melanometry for objective evaluation of skin pigmentation in pulse oximetry studies. Commun. Med. 4, 1–19 (2024).

    Article  Google Scholar 

  23. Sjoding, M. W., Dickson, R. P., Iwashyna, T. J., Gay, S. E. & Valley, T. S. Racial bias in pulse oximetry measurement. N. Engl. J. Med. 383, 2477–2478 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. von Lühmann, A. et al. ninjaCap: a fully customizable and 3D printable headgear for functional near-infrared spectroscopy and electroencephalography brain imaging. Neurophotonics 11, 036601 (2024).

    Google Scholar 

  25. Louis, C. C., Webster, C. T., Gloe, L. M. & Moser, J. S. Hair me out: highlighting systematic exclusion in psychophysiological methods and recommendations to increase inclusion. Front. Hum. Neurosci. 16, 1058953 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Etienne, A. et al. Novel electrodes for reliable EEG recordings on coarse and curly hair. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020, 6151–6154 (2020).

    PubMed  Google Scholar 

  27. Simmons, A., Abdurokhmonova, G., Taylor-Robinette, E. K. & Romeo, R. R. Developing best practices for inclusion in fNIRS research: equity for participants with afro-textured hair. Preprint at https://doi.org/10.31234/osf.io/scbrq_v2 (2025).

  28. Kollias, N. & Baqer, A. H. Absorption mechanisms of human melanin in the visible, 400–720 nm. J. Invest. Dermatol. 89, 384–388 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Fitzpatrick, T. B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124, 869–871 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Feiner, J. R., Severinghaus, J. W. & Bickler, P. E. Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: the effects of oximeter probe type and gender. Anesth. Analg. 105, S18–S23 (2007).

    Article  PubMed  Google Scholar 

  31. Lacerenza, M. et al. Challenging the skin pigmentation bias in tissue oximetry via time-domain near-infrared spectroscopy. Biomed. Opt. Express 16, 690–708 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, J. et al. Automatic analysis of skull thickness, scalp-to-cortex distance and association with age and sex in cognitively normal elderly. Brain Stimul. 16, 653–656 (2023).

    Article  PubMed  Google Scholar 

  33. Schulte-Geers, C. et al. Age and gender-dependent bone density changes of the human skull disclosed by high-resolution flat-panel computed tomography. Int. J. Leg. Med. 125, 417–425 (2011).

    Article  Google Scholar 

  34. Pierre, S. R. S., Peirlinck, M. & Kuhl, E. Sex matters: a comprehensive comparison of female and male hearts. Front. Physiol. 13, 831179 (2022).

    Article  Google Scholar 

  35. Laubach, L. L. Comparative muscular strength of men and women: a review of the literature. Aviat. Space Environ. Med. 47, 534–542 (1976).

    CAS  PubMed  Google Scholar 

  36. Khan, B. et al. Improving optical contact for functional near-infrared brain spectroscopy and imaging with brush optodes. Biomed. Opt. Express 3, 878–898 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gorgolewski, K. J. et al. BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Comput. Biol. 13, e1005209 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Luke, R. et al. NIRS-BIDS: Brain imaging data structure extended to near-infrared spectroscopy. Sci. Data 12, 159 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gao, Y. et al. Short-separation regression incorporated diffuse optical tomography image reconstruction modeling for high-density functional near-infrared spectroscopy. Neurophotonics 10, 025007 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peirce, J. W. Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2, (2009).

  41. Shriver, M. D. & Parra, E. J. Comparison of narrow-band reflectance spectroscopy and tristimulus colorimetry for measurements of skin and hair color in persons of different biological ancestry. Am. J. Phys. Anthropol. 112, 17–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Diffey, B. L., Oliver, R. J. & Farr, P. M. A portable instrument for quantifying erythema induced by ultraviolet radiation. Br. J. Dermatol. 111, 663–672 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Miteva, M. & Tosti, A. Flame hair. Skin Appendage Disord. 1, 105–109 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kasprzak, M & Sicińska, J. The Trichoscopy Derived Sinclair Scale: enhancing visual assessment through quantitative trichoscopy. Australas. J. Dermatol. https://doi.org/10.1111/ajd.12964 (2019).

  45. Grebe, H. R. & Martin, K. Saller: Lehrbuch der Anthropologie. 3. Aufl., 7. Lieferung, brosch, Preis DM 21, 60. Gustav Fischer Verlag. Stuttgart (1958). Acta Genet. Med. Gemellol. (Roma) 8, 123–123 (1959).

    Article  Google Scholar 

  46. Thomson, R. H. The pigments of reddish hair and feathers. Angew. Chem. Int. Ed. Engl. 13, 305–312 (1974).

    Article  CAS  PubMed  Google Scholar 

  47. Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).

    Article  PubMed  Google Scholar 

  48. Piletic, I. R., Matthews, T. E. & Warren, W. S. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy. J. Chem. Phys. 131, 181106 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gaines, M. K. et al. Reimagining hair science: a new approach to classify curly hair phenotypes via new quantitative geometric and structural mechanical parameters. Acc. Chem. Res. 56, 1330–1339 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Pollonini, L., Bortfeld, H. & Oghalai, J. S. PHOEBE: a method for real time mapping of optodes-scalp coupling in functional near-infrared spectroscopy. Biomed. Opt. Express 7, 5104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Article  Google Scholar 

  52. Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 1988).

  53. Gagnon, L. et al. Short separation channel location impacts the performance of short channel regression in NIRS. NeuroImage 59, 2518–2528 (2012).

    Article  PubMed  Google Scholar 

  54. Huppert, T. J. Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy. Neurophotonics 3, 010401 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Loussouarn, G. et al. Worldwide diversity of hair curliness: a new method of assessment. Int. J. Dermatol. 46, 2–6 (2007).

    Article  PubMed  Google Scholar 

  56. Song, C. et al. Augmented reality-based electrode guidance system for reliable electroencephalography. Biomed. Eng. Online 17, 64 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Meta Reality Labs (formerly Facebook Technologies, LLC) as part of the Engineering Approaches to Responsible Neural Interface Design Initiative (M.A.Y.). The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We acknowledge NIH U01EB0239856 (M.A.Y., D.B., S.K., D.C.S., A.C.-G. and T.D.E.), NSF Research Traineeship Program (DGE-1633516) (E.C.), the Netherlands Organization for Scientific Research (NWO Vidi-Grant VI.Vidi.191.210) (B.S.) and the German Federal Ministry of Education and Research (BIFOLD24B) (A.v.L.). We thank the NIRx team for their valuable support in guiding us on source power correction and helping us locate the relevant information in the acquired data.

Author information

Authors and Affiliations

Authors

Contributions

M.A.Y. and D.A.B. conceptualized the research question and framework. M.A.Y. led the project. M.A.Y., D.A.B., J.E.A., D.R. and Y.G. designed the experimental approach and protocols. J.E.A. performed the training of experimenters. P.H., P.F. and N.M. managed the recruitment of participants. J.E.A., D.R., P.H., P.F., R.I.K., E.J.B., N.M., S.D., L.C., D.B., L.K.B., E.C., J.G., J.W., V.T. and Y.Z. executed the experiments. M.A.Y. performed data analysis, statistical assessments and created the visualizations. A.v.L. conceptualized Fig. 5, with A.v.L. and M.A.Y. contributing to its analysis and visualization. M.A.Y. drafted the original manuscript. M.A.Y., D.A.B., B.S., A.v.L., E.C., J.E.A., D.R., R.I.K., E.J.B., N.M., A.C.-G. and T.D.E. reviewed, provided feedback and edited the manuscript. M.A.Y. secured funding for the research project. All authors approved the final version of the paper.

Corresponding author

Correspondence to Meryem A. Yücel.

Ethics declarations

Competing interests

A.v.L. is currently consulting for NIRx Medical Technologies LLC/GmbH. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Leanne Hirshfield, Jasmine Kwasa and Michele Lacerenza for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Correlation analysis of Corrected Signal Mean on the forehead, side of the head and back of the head with participant-level factors
Extended Data Table 2 Output of Multiple Linear Regression analysis for predictors of Corrected Signal Mean on the forehead, side of the head and back of the head
Extended Data Table 3 Output of Multiple Linear Regression Analysis for Predictors of SCI at the forehead, side of the head and back of the head
Extended Data Table 4 Multiple linear regression analysis results for factors influencing GLM output changes in changes in oxyhemoglobin concentration (∆HbO2) and t statistics during the ball-squeezing task
Extended Data Table 5 Mean, standard deviation and the percent change from Run 1 to Run 2 of Uncorrected Signal Mean and SCI for the forehead, side of the head and back of the head
Extended Data Table 6 Classification scales for hair characteristics including hair colour, type, and coarseness
Extended Data Table 7 List of Skin, Hair, and Head Measurements with Definitions and Objectivity Levels
Extended Data Table 8 Mean and standard deviation of hair characteristics on the side and back of the head
Extended Data Table 9 Mean and standard deviation of whole-head hair characteristics, skin properties, and head measurements for the study population

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yücel, M.A., Anderson, J.E., Rogers, D. et al. Quantifying the impact of hair and skin characteristics on fNIRS signal quality for enhanced inclusivity. Nat Hum Behav (2025). https://doi.org/10.1038/s41562-025-02274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-025-02274-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing