Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decoupling geographical constraints from human mobility

Abstract

Driven by access to large volumes of movement data, the study of human mobility has grown rapidly over the past few decades. The field has shown that human mobility is scale-free, proposed models to generate scale-free moving distance distributions and explained how the scale-free distribution arises. It has not, however, explicitly addressed how mobility is structured by geographical constraints, such as how mobility relates to the outlines of landmasses, lakes and rivers and the placement of buildings, roadways and cities. On the basis of millions of moves, we show how separating the effect of geography from mobility choices reveals a power law spanning five orders of magnitude. To do so, we incorporate geography via the pair distribution function, which encapsulates the structure of locations on which mobility occurs. By showing how the spatial distribution of human settlements shapes human mobility, our approach bridges the gap between distance- and opportunity-based models of human mobility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of geography’s influence on human mobility.
Fig. 2: Renormalizing the moving distance distribution by the pair distribution uncovers a power law.
Fig. 3: The structure of residential locations in Denmark.
Fig. 4: A piecewise process.

Similar content being viewed by others

Data availability

The data for Denmark used in this study are not publicly available due to Danish Data Protection regulations. However, access to the data is possible for research purposes. The data can be obtained via Statistics Denmark for Researchers in accordance with Statistics Denmark’s Research Scheme: https://www.dst.dk/en/TilSalg/Forskningsservice/. The location data for France are publicly available at https://adresse.data.gouv.fr/donnees-nationales and https://www.data.gouv.fr. The residential mobility data were obtained from https://www.insee.fr/fr/statistiques. The Foursquare data are publicly available at https://sites.google.com/site/yangdingqi/home/foursquare-dataset. Source data are provided with this paper.

Code availability

The geography model and estimation code are available via GitHub at https://github.com/benmaier/ljhouses. The code for the figures, data and statistical analysis is available via GitHub at https://github.com/LCB0B/role-of-geo. The code is also available via Zenodo at https://doi.org/10.5281/zenodo.14329837 (ref. 68).

References

  1. Fujita, M. et al. The Spatial Economy: Cities, Regions, and International Trade (MIT Press, 2001).

  2. Colizza, V., Barrat, A., Barthélemy, M. & Vespignani, A. The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl Acad. Sci. USA 103, 2015–2020 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brockmann, D. & Helbing, D. The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337–1342 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Setton, E. et al. The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. J. Expo. Sci. Environ. Epidemiol. 21, 42–48 (2011).

    Article  PubMed  Google Scholar 

  5. Coutrot, A. et al. Entropy of city street networks linked to future spatial navigation ability. Nature 604, 104–110 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Pumain, D. Pour une théorie évolutive des villes. Espace Géogr. 26, 119–134 (1997).

    Article  Google Scholar 

  7. Arcaute, E. Hierarchies defined through human mobility. Nature 587, 372–373 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Arcaute, E. & Ramasco, J. J. Recent advances in urban system science: models and data. PLoS ONE 17, e0263200 (2022).

    Article  Google Scholar 

  9. Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel. Nature 439, 462–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Schläpfer, M. et al. The universal visitation law of human mobility. Nature 593, 522–527 (2021).

    Article  PubMed  Google Scholar 

  12. Zipf, G. K. The p1p2/d hypothesis: on the intercity movement of persons. Am. Sociol. Rev. 11, 677–686 (1946).

    Article  Google Scholar 

  13. Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A universal model for mobility and migration patterns. Nature 484, 96–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Alessandretti, L., Sapiezynski, P., Sekara, V., Lehmann, S. & Baronchelli, A. Evidence for a conserved quantity in human mobility. Nat. Hum. Behav. 2, 485–491 (2018).

    Article  PubMed  Google Scholar 

  15. Alessandretti, L., Aslak, U. & Lehmann, S. The scales of human mobility. Nature 587, 402–407 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Pumain, D. (ed.) Hierarchy in Natural and Social Sciences (Springer, 2006).

  17. Arcaute, E. et al. Cities and regions in Britain through hierarchical percolation. R. Soc. Open Sci. 3, 150691 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wilson, A. G. Entropy in Urban and Regional Modelling (Pion, 1970).

  19. Ripley, B. D. Modelling spatial patterns. J. R. Stat. Soc. B 39, 172–212 (1977).

    Article  Google Scholar 

  20. Samaniego, H. & Moses, M. E. Cities as organisms: allometric scaling of urban road networks. J. Transp. Land Use 1, 21–39 (2008).

    Article  Google Scholar 

  21. Lee, M., Barbosa, H., Youn, H., Holme, P. & Ghoshal, G. Morphology of travel routes and the organization of cities. Nat. Commun. 8, 2229 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Batty, M. & Longley, P. Fractal Cities: A Geometry of Form and Function (Academic Press, 1994).

  23. Frankhauser, P. The fractal approach: a new tool for the spatial analysis of urban agglomerations. Popul. Engl. Sel. 10, 205–240 (1998).

    Google Scholar 

  24. Barbosa, H. et al. Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018).

    Article  Google Scholar 

  25. Carrothers, V. A historical review of the gravity and potential concepts of human interaction. J. Am. Inst. Plann. 22, 94–102 (1956).

    Article  Google Scholar 

  26. Wilson, A. G. A statistical theory of spatial distribution models. Transp. Res. 1, 253–269 (1967).

    Article  CAS  Google Scholar 

  27. Stouffer, S. Intervening opportunities: a theory relating mobility and distance. Am. Sociol. Rev. 5, 845–867 (1940).

    Article  Google Scholar 

  28. Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A tale of many cities: universal patterns in human urban mobility. PLoS ONE 7, e40692 (2012).

    Article  Google Scholar 

  29. Mazzoli, M. et al. Field theory for recurrent mobility. Nat. Commun. 10, 3895 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yan, X.-Y., Wang, W.-X., Gao, Z.-Y. & Lai, Y.-C. Universal model of individual and population mobility on diverse spatial scales. Nat. Commun. 8, 1639 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Han, X.-P., Hao, Q., Wang, B.-H. & Zhou, T. Origin of the scaling law in human mobility: hierarchy of traffic systems. Phys. Rev. E 83, 036117 (2011).

    Article  Google Scholar 

  32. Hong, I., Jung, W.-S. & Jo, H.-H. Gravity model explained by the radiation model on a population landscape. PLoS ONE 14, e0218028 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cohen, J. E. & Courgeau, D. Modeling distances between humans using Taylor’s law and geometric probability. Math. Popul. Stud. 24, 197–218 (2017).

    Article  Google Scholar 

  34. Gao, Q. et al. Identifying human mobility via trajectory embeddings. In Proc. 26th International Joint Conference on Artificial Intelligence (ed. Sierra, C.) 1689–1695 (International Joint Conferences on Artificial Intelligence, 2017).

  35. Murray, D. et al. Unsupervised embedding of trajectories captures the latent structure of scientific migration. Proc. Natl Acad. Sci. USA 120, e2305414120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hansen, J.-P. & McDonald, I. R. Theory of Simple Liquids: with Applications to Soft Matter 2nd edn (Academic Press, 1986).

  37. Nijkamp, P. & Reggiani, A. A Synthesis Between Macro and Micro Models in Spatial Interaction Analysis, with Special Reference to Dynamics Tech. Rep. (VU Univ. Amsterdam, Faculty of Economics and Business Administration, 1986).

  38. Clark, C. Urban population densities. J. R. Stat. Soc. A 114, 490–496 (1951).

    Article  Google Scholar 

  39. Newling, B. E. The spatial variation of urban population densities. Geogr. Rev. 59, 242–252 (1969).

    Article  Google Scholar 

  40. Bertaud, A. & Malpezzi, S. The Spatial Distribution of Population in 48 World Cities: Implications for Economies in Transition Working Paper (Center for Urban Land Economics Research, Univ. Wisconsin, 2003).

  41. Duranton, G. & Puga, D. in Handbook of Regional and Urban Economics Vol. 4 (eds Henderson, J. V. & Thisse, J.-F.) 2063–2117 (Elsevier, 2004).

  42. Lennard-Jones, J. E. Cohesion. Proc. Phys. Soc. 43, 461–482 (1931).

    Article  CAS  Google Scholar 

  43. Ornstein, L. S. & Zernike, F. Accidental deviations of density and opalescence at the critical point of a single substance. Proc. R. Netherlands Acad. Arts Sci. 17, 793–806 (1914).

    Google Scholar 

  44. Christaller, W. Die Zentralen Orte in Süddeutschland (Gustav Fischer, 1933).

  45. Soneira, R. M. & Peebles, P. J. E. A computer model universe: simulation of the nature of the galaxy distribution in the Lick catalog. Astron. J. 83, 845–860 (1978).

    Article  Google Scholar 

  46. Makse, H. A., Havlin, S. & Stanley, H. E. Modelling urban growth patterns. Nature 377, 608–612 (1995).

    Article  CAS  Google Scholar 

  47. Cadwallader, M. Migration and Residential Mobility: Macro and Micro Approaches (Univ. Wisconsin Press, 1992).

  48. Pappalardo, L., Manley, E., Sekara, V. & Alessandretti, L. Future directions in human mobility science. Nat. Comput. Sci. 3, 7 (2023).

    Article  Google Scholar 

  49. Clark, W. A., Huang, Y. & Withers, S. Does commuting distance matter? Commuting tolerance and residential change. Reg. Sci. Urban Econ. 33, 199–221 (2003).

    Article  Google Scholar 

  50. Weber, A. & Friedrich, C. J. Alfred Weber’s Theory of the Location of Industries (Univ. Chicago Press, 1929).

  51. Moduldata for Befolkning og Valg (Danmarks Statistik, 2024); https://www.dst.dk/da/Statistik/dokumentation/Times/moduldata-for-befolkning-og-valg

  52. Api Documentation for Adgangsadresse (Dataforsyningen, 2023); https://dawadocs.dataforsyningen.dk/dok/api/adgangsadresse

  53. Schlosser, F., Sekara, V., Brockmann, D. & Garcia-Herranz, M. Biases in human mobility data impact epidemic modeling. Preprint at arXiv https://doi.org/10.48550/arXiv.2112.12521 (2021).

  54. Wesolowski, A., Eagle, N., Noor, A. M., Snow, R. W. & Buckee, C. O. The impact of biases in mobile phone ownership on estimates of human mobility. J. R. Soc. Interface 10, 20120986 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jacobsen, R., Møller, H. & Mouritsen, A. Natural variation in the human sex ratio. Hum. Reprod. 14, 3120–3125 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Births (Statistics Denmark, 2024); https://www.dst.dk/en/Statistik/emner/borgere/befolkning/foedsler

  57. Campello, R. J., Moulavi, D. & Sander, J. Density-based clustering based on hierarchical density estimates. In Proc. Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (eds Pei, J. et al.) 160–172 (Springer, 2013).

  58. Yang, D., Zhang, D. & Qu, B. Participatory cultural mapping based on collective behavior data in location-based social networks. ACM Trans. Intell. Syst. Technol. 7, 30:1–30:23 (2015).

    Google Scholar 

  59. Runfola, D. et al. geoBoundaries: a global database of political administrative boundaries. PLoS ONE 15, e0231866 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liang, X., Zhao, J., Dong, L. & Xu, K. Unraveling the origin of exponential law in intra-urban human mobility. Sci. Rep. 3, 2983 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Maier, B. F. Generalization of the small-world effect on a model approaching the Erdős–Rényi random graph. Sci. Rep. 9, 9268 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Verlet, L. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98 (1967).

    Article  CAS  Google Scholar 

  63. Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  64. Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Article  Google Scholar 

  65. Hanel, R., Corominas-Murtra, B., Liu, B. & Thurner, S. Fitting power-laws in empirical data with estimators that work for all exponents. PLoS ONE 12, e0170920 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bauke, H. Parameter estimation for power-law distributions by maximum likelihood methods. Eur. Phys. J. B 58, 167–173 (2007).

    Article  CAS  Google Scholar 

  67. Maier, B. F. Maximum-likelihood fits of piece-wise Pareto distributions with finite and non-zero core. Preprint at arXiv https://doi.org/10.48550/arXiv.2309.09589 (2023).

  68. Boucherie, L., Maier, B. & Lehmann, S. Decomposing geographical and universal aspects of human mobility. Zenodo https://doi.org/10.5281/zenodo.14329837 (2024).

Download references

Acknowledgements

We thank J. Dzubiella and Y. Ahn for helpful comments in the early development of this study, as well as L. Alessandretti and S. De Sojo for providing insightful comments on the manuscript. The work was supported in part by the Villum Foundation Grant Nation-Scale Social Networks (grant no. 00034288) (S.L.) and the Danish Council for Independent Research (grant no. 0136-00315B) (S.L.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.B., B.F.M. and S.L. designed the study and the model. L.B. and B.F.M. performed the analyses and implemented the model. L.B., B.F.M. and S.L. analysed the results and wrote the paper.

Corresponding author

Correspondence to Sune Lehmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Ed Manley, Tao Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Pair distribution of buildings and addresses in France.

Pair distribution of buildings and addresses in France shows three scales: (I) Immediate neighborhood-scale with linear onset and oscillating modulation, (II) city-scale with power-law growth (α = 0.67, for addresses), and (III) country-scale with slower growth and rapid decay (see Supplementary Section 1.6).

Extended Data Fig. 2 Demographic characteristics of the Danish Residential Mobility dataset.

The gender imbalance is the first panel due to the 1.07 male/female ratio rate at birth55. Indeed, we study the total population, not the currently alive population, that is balanced for gender due higher death rate for men. Therefore, although there is an imbalance in gender, the dataset is not biased. The second panel shows the birth year of every individual in the dataset, it closely follows the birth rate of Denmark, and the differences are due to migrations56.

Extended Data Fig. 3 Age Distribution.

Distribution of Age at the time of moving in the Danish residential mobility data (see Methods: Data).

Extended Data Fig. 4

Comparison between our framework, the gravity model and the radiation model for cities.

Extended Data Fig. 5

A continuous gravity law.

(a) This framework can be represented as a continuous gravity law, if we take a toy model of two distant cities, (b) the pair distribution at the distance d between the two cities collapses into a Dirac distribution, with the height equal to the product of cities population, N1N2. (c) The toy intrinsic distance cost of the simulation model. For a comparison with a continuous radiation model, see Supplementary Section 3.1.2.

Extended Data Table 1 Power law estimation
Extended Data Table 2 Power law log-likelihoods

Supplementary information

Source data

Source Data Fig. 2

Distribution values for fitting the power laws.

Source Data Fig. 4

Distribution values for fitting the piecewise power laws.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boucherie, L., Maier, B.F. & Lehmann, S. Decoupling geographical constraints from human mobility. Nat Hum Behav (2025). https://doi.org/10.1038/s41562-025-02282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-025-02282-7

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics