Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hierarchically engineered nanostructures from compositionally anisotropic molecular building blocks

Abstract

The inability to synthesize hierarchical structures with independently tailored nanoscale and mesoscale features limits the discovery of next-generation multifunctional materials. Here we present a predictable molecular self-assembly strategy to craft nanostructured materials with a variety of phase-in-phase hierarchical morphologies. The compositionally anisotropic building blocks employed in the assembly process are formed by multicomponent graft block copolymers containing sequence-defined side chains. The judicious design of various structural parameters in the graft block copolymers enables broadly tunable compositions, morphologies and lattice parameters across the nanoscale and mesoscale in the assembled structures. Our strategy introduces advanced design principles for the efficient creation of complex hierarchical structures and provides a facile synthetic platform to access nanomaterials with multiple precisely integrated functionalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hierarchical nanostructures constructed from GBCP-based CAMBBs.
Fig. 2: Hierarchical nanostructures constructed from (A-alt-B)-b-C-type GBCPs.
Fig. 3: Diversity of side-chain compositions of (A-alt-B)-b-C-type GBCPs and independent tunability between superstructure and substructure.
Fig. 4: CAMBBs beyond (A-alt-B)-b-C-type GBCPs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The code generated during the current study is available from the corresponding authors upon reasonable request.

References

  1. Garnier, F., Hajlaoui, R., Yassar, A. & Srivastava, P. All-polymer field-effect transistor realized by printing techniques. Science 265, 1684–1686 (1994).

    Article  CAS  Google Scholar 

  2. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    Article  CAS  Google Scholar 

  3. Stoykovich, M. P. et al. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308, 1442–1446 (2005).

    Article  CAS  Google Scholar 

  4. Huo, F. et al. Polymer pen lithography. Science 321, 1658–1660 (2008).

    Article  CAS  Google Scholar 

  5. Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    Article  CAS  Google Scholar 

  6. Zeng, C., Chen, Y., Kirschbaum, K., Lambright, K. J. & Jin, R. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 354, 1580–1584 (2016).

    Article  CAS  Google Scholar 

  7. Feng, L., Wang, K.-Y., Willman, J. & Zhou, H.-C. Hierarchy in metal–organic frameworks. ACS Central Sci. 6, 359–367 (2020).

    Article  CAS  Google Scholar 

  8. Lutz, J.-F., Lehn, J.-M., Meijer, E. W. & Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 1, 16024 (2016).

    Article  CAS  Google Scholar 

  9. Li, C. et al. Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nat. Mater. 19, 900–909 (2020).

    Article  CAS  Google Scholar 

  10. Feng, X. et al. Single crystal texture by directed molecular self-assembly along dual axes. Nat. Mater. 18, 1235–1243 (2019).

    Article  CAS  Google Scholar 

  11. Macfarlane, R. J., Jones, M. R., Lee, B., Auyeung, E. & Mirkin, C. A. Topotactic interconversion of nanoparticle superlattices. Science 341, 1222–1225 (2013).

    Article  CAS  Google Scholar 

  12. Nagaoka, Y. et al. Superstructures generated from truncated tetrahedral quantum dots. Nature 561, 378–382 (2018).

    Article  CAS  Google Scholar 

  13. Tian, Y. et al. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nat. Mater. 19, 789–796 (2020).

    Article  CAS  Google Scholar 

  14. Santos, P. J., Gabrys, P. A., Zornberg, L. Z., Lee, M. S. & Macfarlane, R. J. Macroscopic materials assembled from nanoparticle superlattices. Nature 591, 586–591 (2021).

    Article  CAS  Google Scholar 

  15. Hudson, S. D. et al. Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science 278, 449–452 (1997).

    Article  CAS  Google Scholar 

  16. Lee, S., Bluemle, M. J. & Bates, F. S. Discovery of a Frank-Kasper σ phase in sphere-forming block copolymer melts. Science 330, 349–353 (2010).

    Article  CAS  Google Scholar 

  17. Bates, F. S. et al. Multiblock polymers: panacea or Pandora’s box? Science 336, 434–440 (2012).

    Article  CAS  Google Scholar 

  18. Huang, M. et al. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 348, 424–428 (2015).

    Article  CAS  Google Scholar 

  19. Bockstaller, M. R., Mickiewicz, R. A. & Thomas, E. L. Block copolymer nanocomposites: perspectives for tailored functional materials. Adv. Mater. 17, 1331–1349 (2005).

    Article  CAS  Google Scholar 

  20. Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    Article  CAS  Google Scholar 

  21. Zhao, Y. et al. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater. 8, 979–985 (2009).

    Article  CAS  Google Scholar 

  22. Sanford, M. S., Love, J. A. & Grubbs, R. H. A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics 20, 5314–5318 (2001).

    Article  CAS  Google Scholar 

  23. Xia, Y., Olsen, B. D., Kornfield, J. A. & Grubbs, R. H. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement. J. Am. Chem. Soc. 131, 18525–18532 (2009).

    Article  CAS  Google Scholar 

  24. Bolton, J., Bailey, T. S. & Rzayev, J. Large pore size nanoporous materials from the self-assembly of asymmetric bottlebrush block copolymers. Nano Lett. 11, 998–1001 (2011).

    Article  CAS  Google Scholar 

  25. Chae, C.-G. et al. Experimental formulation of photonic crystal properties for hierarchically self-assembled POSS–bottlebrush block copolymers. Macromolecules 51, 3458–3466 (2018).

    Article  CAS  Google Scholar 

  26. Fei, H.-F. et al. Influence of molecular architecture and chain flexibility on the phase map of polystyrene-block-poly(dimethylsiloxane) brush block copolymers. Macromolecules 52, 6449–6457 (2019).

    Article  CAS  Google Scholar 

  27. Guo, Z. H. et al. Janus graft block copolymers: design of a polymer architecture for independently tuned nanostructures and polymer properties. Angew. Chem. Int. Ed. 57, 8493–8497 (2018).

    Article  CAS  Google Scholar 

  28. Kawamoto, K. et al. Graft-through synthesis and assembly of Janus bottlebrush polymers from A-branch-B diblock macromonomers. J. Am. Chem. Soc. 138, 11501–11504 (2016).

    Article  CAS  Google Scholar 

  29. Masuda, J. et al. Composition-dependent morphological transition of hierarchically-ordered structures formed by multiblock terpolymers. Macromolecules 40, 4023–4027 (2007).

    Article  CAS  Google Scholar 

  30. Hayashida, K. et al. Hierarchical morphologies formed by ABC star-shaped terpolymers. Macromolecules 40, 3695–3699 (2007).

    Article  CAS  Google Scholar 

  31. Markov, V., Kriksin, Y., Erukhimovich, I. & Brinke, G. T. Perpendicular lamellar-in-lamellar and other planar morphologies in A-b-(B-b-A)2-b-C and (B-b-A)2-b-C ternary multiblock copolymer melts. J. Chem. Phys. 139, 084906 (2013).

    Article  CAS  Google Scholar 

  32. Ruokolainen, J., Brinke, G. T. & Ikkala, O. Supramolecular polymeric materials with hierarchical structure-within-structure morphologies. Adv. Mater. 11, 777–780 (1999).

    Article  CAS  Google Scholar 

  33. Zhang, Z.-K. et al. Hierarchical structures with double lower disorder-to-order transition and closed-loop phase behaviors in charged block copolymers bearing long alkyl side groups. Macromolecules 53, 8714–8724 (2020).

    Article  CAS  Google Scholar 

  34. Hofman, A. H., Terzic, I., Stuart, M. C. A., ten Brinke, G. & Loos, K. Hierarchical self-assembly of supramolecular double-comb triblock terpolymers. ACS Macro Lett. 7, 1168–1173 (2018).

    Article  CAS  Google Scholar 

  35. Zhu, Y.-L. et al. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem. 34, 2197–2211 (2013).

    Article  CAS  Google Scholar 

  36. Hoogerbrugge, P. J. & Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992).

    Article  Google Scholar 

  37. Groot, R. D. & Warren, P. B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997).

    Article  CAS  Google Scholar 

  38. Groot, R. D. & Madden, T. J. Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 108, 8713–8724 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.Z. acknowledges support from the National Science Foundation (NSF; DMR-2003875). J.A.J. acknowledges support from Eni S.p.A. through the MIT Energy Initiative and an NSF award (CHE-1629358). C.O.O. acknowledges support from an NSF award (DMR-1945966). W.L. acknowledges support from the National Natural Science Foundation of China (21925301). X.F. thanks the China Scholarship Council (CSC no. 201706240130) for the financial support for his visit at Yale University. A.N.L. thanks the NSF Graduate Research Fellowship for supporting her research. The research used resources of the CMS beamline (11-BM) of the National Synchrotron Light Source II, a US Department of Energy Office of Science User Facility operated for the US Department of Energy Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. We also thank R. Li (Brookhaven National Laboratory) and B. Q. Mercado (Yale) for their technical assistance with SAXS measurements during the COVID-19 pandemic.

Author information

Authors and Affiliations

Authors

Contributions

R.L., Y.X., X.F., J.A.J. and M.Z. designed the research. R.L., Y.X. and X.F. performed all synthetic work; R.L., Y.X., X.F., A.N.L, Z.S. and R.D. conducted the structure and property characterization; Q.S., Y.Q., Q.X. and W.L. conducted the DPD simulations; and R.L., Y.X., X.F. and M.Z. analysed the data. R.L., Y.X., X.F., A.N.L., C.O.O., J.A.J., W.L. and M.Z. wrote the paper.

Corresponding authors

Correspondence to Jeremiah A. Johnson or Mingjiang Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–157 and Tables 1–4.

Source data

Source Data Fig. 2

Raw SAXS data used in Fig. 2a.

Source Data Fig. 3

Raw SAXS data used in Fig. 3b,d.

Source Data Fig. 4

Raw SAXS data used in Fig. 4a–c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, R., Xue, Y., Fu, X. et al. Hierarchically engineered nanostructures from compositionally anisotropic molecular building blocks. Nat. Mater. 21, 1434–1440 (2022). https://doi.org/10.1038/s41563-022-01393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-022-01393-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing