Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ p-block protective layer plating in carbonate-based electrolytes enables stable cell cycling in anode-free lithium batteries

Subjects

Abstract

‘Anode-free’ Li metal batteries offer the highest possible energy density but face low Li coulombic efficiency when operated in carbonate electrolytes. Here we report a performance improvement of anode-free Li metal batteries using p-block tin octoate additive in the carbonate electrolyte. We show that the preferential adsorption of the octoate moiety on the Cu substrate induces the construction of a carbonate-less protective layer, which inhibits the side reactions and contributes to the uniform Li plating. In the mean time, the reduction of Sn2+ at the initial charging process builds a stable lithophilic layer of Cu6Sn5 alloy and Sn, improving the affinity between the Li and the Cu substrate. Notably, anode-free Li metal pouch cells with tin octoate additive demonstrate good cycling stability with a high coulombic efficiency of ~99.1%. Furthermore, this in situ p-block layer plating strategy is also demonstrated with other types of p-block metal octoate, as well as a Na metal battery system, demonstrating the high level of universality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical stability of metal anode with and without additive.
Fig. 2: Regulation of Li plating/stripping by Sn(Oct)2 additive.
Fig. 3: Li plating/stripping behaviour and characterization of plated Li.
Fig. 4: Electrochemical performance of Li || NCM coin cells and Cu || NCM pouch cells, cells visualization and Li+ solvation analysis.
Fig. 5: Mechanism of Sn(Oct)2 additive on Li plating process.

Similar content being viewed by others

Data availability

All of the data that support the findings of this study are available in the Article. Atomic configurations of the computational models constructed in this study are available via figshare at https://doi.org/10.6084/m9.figshare.26340670.v1 (ref. 57). Source data are provided with this paper.

References

  1. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    CAS  PubMed  Google Scholar 

  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  3. Yang, P. & Tarascon, J.-M. Towards systems materials engineering. Nat. Mater. 11, 560–563 (2012).

    CAS  PubMed  Google Scholar 

  4. Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    CAS  Google Scholar 

  5. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    CAS  Google Scholar 

  6. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    CAS  PubMed  Google Scholar 

  7. Chen, J. et al. Electrolyte design for Li metal-free Li batteries. Mater. Today 39, 118–126 (2020).

    Google Scholar 

  8. Qian, J. et al. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016).

    CAS  Google Scholar 

  9. Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).

    CAS  Google Scholar 

  10. Tian, Y. et al. Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy 78, 105344 (2020).

    CAS  Google Scholar 

  11. Huang, C. J. et al. Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 12, 1452 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    CAS  Google Scholar 

  13. Genovese, M., Louli, A. J., Weber, R., Hames, S. & Dahn, J. R. Measuring the coulombic efficiency of lithium metal cycling in anode-free lithium metal batteries. J. Electrochem. Soc. 165, A3321–A3325 (2018).

    CAS  Google Scholar 

  14. Tong, Z., Bazri, B., Hu, S.-F. & Liu, R.-S. Interfacial chemistry in anode-free batteries: challenges and strategies. J. Mater. Chem. A 9, 7396–7406 (2021).

    CAS  Google Scholar 

  15. Nanda, S., Gupta, A. & Manthiram, A. Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 11, 2000804 (2020).

    Google Scholar 

  16. Beyene, T. T. et al. Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries. J. Electrochem. Soc. 166, A1501–A1509 (2019).

    CAS  Google Scholar 

  17. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    CAS  Google Scholar 

  18. Li, S. et al. A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte. J. Mater. Chem. A 9, 7667–7674 (2021).

    CAS  Google Scholar 

  19. Liu, Y. et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    CAS  Google Scholar 

  21. Zheng, J. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).

    CAS  Google Scholar 

  22. Tu, Z. et al. Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat. Energy 3, 310–316 (2018).

    CAS  Google Scholar 

  23. Pathak, R. et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 11, 93 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Choudhury, S. et al. Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem. Int. Ed. 56, 13070–13077 (2017).

    CAS  Google Scholar 

  25. Nayak, P. K., Yang, L., Brehm, W. & Adelhelm, P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. 57, 102–120 (2018).

    CAS  Google Scholar 

  26. Soulmi, N. et al. Sn(TFSI)2 as a suitable salt for the electrodeposition of nanostructured Cu6Sn5–Sn composites obtained on a Cu electrode in an ionic liquid. Inorg. Chem. Front. 6, 248–256 (2019).

    CAS  Google Scholar 

  27. Biswal, P. et al. The early-stage growth and reversibility of Li electrodeposition in Br-rich electrolytes. Proc. Natl Acad. Sci. USA 118, 2012071118 (2021).

    Google Scholar 

  28. Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    CAS  Google Scholar 

  29. Zhang, S. S., Fan, X. & Wang, C. A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochim. Acta 258, 1201–1207 (2017).

    CAS  Google Scholar 

  30. Luo, Z. et al. Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation. Energy Storage Mater. 27, 124–132 (2020).

    Google Scholar 

  31. Peled, E., Golodnitsky, D. & Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208–L210 (1997).

    CAS  Google Scholar 

  32. Moradabadi, A., Bakhtiari, M. & Kaghazchi, P. Effect of anode composition on solid electrolyte interphase formation. Electrochim. Acta 213, 8–13 (2016).

    CAS  Google Scholar 

  33. Li, J.-T. et al. XPS and ToF-SIMS study of electrode processes on Sn−Ni alloy anodes for Li-ion batteries. J. Phys. Chem. C 115, 7012–7018 (2011).

    CAS  Google Scholar 

  34. Youn, D. H., Heller, A. & Mullins, C. B. Simple synthesis of nanostructured Sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode. Chem. Mater. 28, 1343–1347 (2016).

    CAS  Google Scholar 

  35. Deng, Z. et al. Ultrasonic scanning to observe wetting and “unwetting” in Li-ion pouch cells. Joule 4, 2017–2029 (2020).

    CAS  Google Scholar 

  36. Porion, P. et al. Comparative study on transport properties for LiFAP and LiPF6 in alkyl-carbonates as electrolytes through conductivity, viscosity and NMR self-diffusion measurements. Electrochim. Acta 114, 95–104 (2013).

    CAS  Google Scholar 

  37. Gottlieb, H. E., Kotlyar, V. & Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 62, 7512–7515 (1997).

    CAS  PubMed  Google Scholar 

  38. Hu, Y.-Y. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12, 1130–1136 (2013).

    CAS  PubMed  Google Scholar 

  39. Tang, M. et al. Following lithiation fronts in paramagnetic electrodes with in situ magnetic resonance spectroscopic imaging. Nat. Commun. 7, 13284 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017).

    Google Scholar 

  41. Menkin, S. et al. Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 125, 16719–16732 (2021).

    CAS  Google Scholar 

  42. Frerichs, J. E. et al. 119Sn and 7Li solid-state NMR of the binary Li–Sn intermetallics: structural fingerprinting and impact on the isotropic 119Sn shift via DFT calculations. Chem. Mater. 33, 3499–3514 (2021).

    CAS  Google Scholar 

  43. Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).

    CAS  PubMed  Google Scholar 

  44. Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012).

    CAS  PubMed  Google Scholar 

  45. Zhong, Y. et al. Mechanistic insights into fast charging and discharging of the sodium metal battery anode: a comparison with lithium. J. Am. Chem. Soc. 143, 13929–13936 (2021).

    CAS  PubMed  Google Scholar 

  46. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Google Scholar 

  48. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  49. Frisch, M. J. et al. Gaussian 16, revision C.01 (Gaussian, 2016).

  50. He, X., Zhu, Y., Epstein, A. & Mo, Y. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 4, 18 (2018).

    Google Scholar 

  51. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Google Scholar 

  52. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general Amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    CAS  PubMed  Google Scholar 

  53. Zheng, S. et al. VFFDT: a new software for preparing AMBER force field parameters for metal-containing molecular systems. J. Chem. Inf. Model. 56, 811–818 (2016).

    CAS  PubMed  Google Scholar 

  54. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    CAS  Google Scholar 

  55. Yang, M., Shi, Z., He, Z. & Wang, D. Unraveling electrolyte solvation architectures for high-performance lithium-ion batteries. Sci. China Technol. Sci. 67, 958–964 (2024).

    CAS  Google Scholar 

  56. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Google Scholar 

  57. Shi, J. et al. Atomistic configurations of EC and DEC solvents and their related surface models. figshare https://doi.org/10.6084/m9.figshare.26340670.v1 (2024).

Download references

Acknowledgements

The work leading to these results received funding from the National Natural Science Foundation of China (22179098, to J.M.) and the Fundamental Research Funds for the Central Universities. L.Q. acknowledges support from the National Natural Science Foundation of China (52272203). Y.H. acknowledges support from the National Natural Science Foundation of China (52027816). M.T. acknowledges support from the National Natural Science Foundation of China (22090043). M.Y. acknowledges support from the National Natural Science Foundation of China (52302302). P.S. and T.K. acknowledge support from the German Research Foundation (STR 596/13−1).

Author information

Authors and Affiliations

Authors

Contributions

J.M. conceived and coordinated the project. J.S., T.K., Z.Z., L.S., J.L., M.T., Z.D., M.L., J.X., Y.S., L.Q., Y.H., P.S. and J.M. carried out experimental work and data analysis. M.Y. performed theoretical calculations. All authors discussed the results. J.S., T.K., Z.Z., M.Y., L.Q., Y.H., P.S. and J.M. wrote the paper with the contributions of all co-authors.

Corresponding authors

Correspondence to Long Qie, Yunhui Huang, Peter Strasser or Jiwei Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Stefan Freunberger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28 and Tables 1 and 2.

Source data

Source Data Fig. 1

Electrochemical stability of metal anode with and without additive.

Source Data Fig. 2

Regulation of Sn(Oct)2 additive on the Li plating/stripping.

Source Data Fig. 3

Li plating/stripping behaviour and the characterization of plated Li.

Source Data Fig. 4

Electrochemical performance of Li || NCM coin cells and Cu || NCM pouch cells, cell visualization and Li+ solvation analysis.

Source Data Fig. 5

Mechanism of Sn(Oct)2 additive on Li plating process.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Koketsu, T., Zhu, Z. et al. In situ p-block protective layer plating in carbonate-based electrolytes enables stable cell cycling in anode-free lithium batteries. Nat. Mater. 23, 1686–1694 (2024). https://doi.org/10.1038/s41563-024-01997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-024-01997-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing