Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li–S batteries

Subjects

Abstract

Lithium–sulfur (Li–S) all-solid-state batteries (ASSBs) hold great promise for next-generation safe, durable and energy-dense battery technology. However, solid-state sulfur conversion reactions are kinetically sluggish and primarily constrained to the restricted three-phase boundary area of sulfur, carbon and solid electrolytes, making it challenging to achieve high sulfur utilization. Here we develop and implement mixed ionic–electronic conductors (MIECs) in sulfur cathodes to replace conventional solid electrolytes and invoke conversion reactions at sulfur–MIEC interfaces in addition to traditional three-phase boundaries. Microscopic and tomographic analyses reveal the emergence of mixed-conducting domains embedded in sulfur at sulfur–MIEC boundaries, helping promote the thorough conversion of active sulfur into Li2S. Consequently, substantially improved active sulfur ratios (up to 87.3%) and conversion degrees (>94%) are achieved in Li–S ASSBs with high discharge capacity (>1,450 mAh g–1) and long cycle life (>1,000 cycles). The strategy is also applied to enhance the active material utilization of other conversion cathodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the sulfur cathode using MIEC.
Fig. 2: The origin of the low sulfur utilization.
Fig. 3: Materials characterization.
Fig. 4: Electrochemical evaluation of Li–S ASSBs at 60 °C.
Fig. 5: Post-characterization of S-C-MIEC20 cathodes.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. Computational data are available via figshare at https://doi.org/10.6084/m9.figshare.27257931 (ref. 55).

References

  1. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    CAS  Google Scholar 

  2. Tan, D. H. S. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021).

    CAS  PubMed  Google Scholar 

  3. Xiao, Y. et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat. Mater. 20, 984–990 (2021).

    CAS  PubMed  Google Scholar 

  4. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    CAS  PubMed  Google Scholar 

  5. Alexander, G. V., Shi, C., O’Neill, J. & Wachsman, E. D. Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat. Mater. 22, 1136–1143 (2023).

    CAS  PubMed  Google Scholar 

  6. Jun, K. et al. Lithium superionic conductors with corner-sharing frameworks. Nat. Mater. 21, 924–931 (2022).

    CAS  PubMed  Google Scholar 

  7. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    CAS  PubMed  Google Scholar 

  8. Zhao, C. et al. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021).

    CAS  PubMed  Google Scholar 

  9. Li, Z. et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy 8, 84–93 (2023).

    CAS  Google Scholar 

  10. Huang, Q. et al. Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nat. Mater. 18, 1343–1349 (2019).

    CAS  PubMed  Google Scholar 

  11. Hua, X. et al. Revisiting metal fluorides as lithium-ion battery cathodes. Nat. Mater. 20, 841–850 (2021).

    CAS  PubMed  Google Scholar 

  12. Chung, W. J. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518–524 (2013).

    CAS  PubMed  Google Scholar 

  13. Muench, S. et al. Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).

    CAS  PubMed  Google Scholar 

  14. Wu, F. & Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10, 435–459 (2017).

    CAS  Google Scholar 

  15. Janek, J. & Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023).

    Google Scholar 

  16. Zhang, J. et al. Microstructure engineering of solid-state composite cathode via solvent-assisted processing. Joule 5, 1845–1859 (2021).

    CAS  Google Scholar 

  17. Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. & Su, Y.-S. Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

    CAS  PubMed  Google Scholar 

  18. Bradbury, R. et al. Visualizing reaction fronts and transport limitations in solid-state Li–S batteries via operando neutron imaging. Adv. Energy Mater. 13, 2203426 (2023).

    CAS  Google Scholar 

  19. Ohno, S., Rosenbach, C., Dewald, G. F., Janek, J. & Zeier, W. G. Linking solid electrolyte degradation to charge carrier transport in the thiophosphate-based composite cathode toward solid-state lithium-sulfur batteries. Adv. Funct. Mater. 31, 2010620 (2021).

    CAS  Google Scholar 

  20. Zhou, J. et al. Healable and conductive sulfur iodide for solid-state Li–S batteries. Nature 627, 301–305 (2024).

    CAS  PubMed  Google Scholar 

  21. Han, F. et al. High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16, 4521–4527 (2016).

    CAS  PubMed  Google Scholar 

  22. Yao, X. et al. High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017).

    Google Scholar 

  23. Zhang, Y. et al. High-performance all-solid-state lithium–sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. J. Mater. Chem. A 6, 23345–23356 (2018).

    CAS  Google Scholar 

  24. Hou, L.-P. et al. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium–sulfur batteries. Energy Storage Mater. 25, 436–442 (2020).

    Google Scholar 

  25. Sakuda, A., Sato, Y., Hayashi, A. & Tatsumisago, M. Sulfur-based composite electrode with interconnected mesoporous carbon for all-solid-state lithium–sulfur batteries. Energy Technol. 7, 1900077 (2019).

    CAS  Google Scholar 

  26. Shi, X. et al. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium–sulfur battery. Nano Lett. 21, 9325–9331 (2021).

    CAS  PubMed  Google Scholar 

  27. Wang, D. et al. Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte. Nat. Commun. 14, 1895 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kwok, C. Y., Xu, S., Kochetkov, I., Zhou, L. & Nazar, L. F. High-performance all-solid-state Li2S batteries using an interfacial redox mediator. Energy Environ. Sci. 16, 610–618 (2023).

    CAS  Google Scholar 

  29. Xu, S. et al. A high capacity all solid-state Li–sulfur battery enabled by conversion–intercalation hybrid cathode architecture. Adv. Funct. Mater. 31, 2004239 (2021).

    CAS  Google Scholar 

  30. Ulissi, U. et al. High capacity all-solid-state lithium batteries enabled by pyrite–sulfur composites. Adv. Energy Mater. 8, 1801462 (2018).

    Google Scholar 

  31. Alzahrani, A. S. et al. Confining sulfur in porous carbon by vapor deposition to achieve high-performance cathode for all-solid-state lithium–sulfur batteries. ACS Energy Lett. 6, 413–418 (2021).

    CAS  Google Scholar 

  32. Kim, H., Choi, H.-N., Hwang, J.-Y., Yoon, C. S. & Sun, Y.-K. Tailoring the interface between sulfur and sulfide solid electrolyte for high-areal-capacity all-solid-state lithium–sulfur batteries. ACS Energy Lett. 8, 3971–3979 (2023).

    CAS  Google Scholar 

  33. Zhou, G., Chen, H. & Cui, Y. Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7, 312–319 (2022).

    CAS  Google Scholar 

  34. Cao, D. et al. Understanding electrochemical reaction mechanisms of sulfur in all-solid-state batteries through operando and theoretical studies. Angew. Chem. Int. Ed. 135, e202302363 (2023).

    Google Scholar 

  35. Xiao, Y. et al. Comparison of sulfur cathode reactions between a concentrated liquid electrolyte system and a solid-state electrolyte system by soft X-ray absorption spectroscopy. ACS Appl. Energy Mater. 4, 186–193 (2021).

    CAS  Google Scholar 

  36. Dietrich, C. et al. Lithium ion conductivity in Li2S–P2S5 glasses—building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J. Mater. Chem. A 5, 18111–18119 (2017).

    CAS  Google Scholar 

  37. Sun, K. et al. Interaction of TiS2 and sulfur in Li–S battery system. J. Electrochem. Soc. 164, A1291–A1297 (2017).

    CAS  Google Scholar 

  38. Dewald, G. F., Ohno, S., Hering, J. G., Janek, J. & Zeier, W. G. Analysis of charge carrier transport toward optimized cathode composites for all‐solid‐state Li–S batteries. Batteries Supercaps 4, 183–194 (2021).

    CAS  Google Scholar 

  39. Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Google Scholar 

  41. Schwietert, T. K. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020).

    CAS  PubMed  Google Scholar 

  42. Notestein, J. M. et al. Structural assessment and catalytic Consequences of the oxygen coordination environment in grafted Ti−calixarenes. J. Am. Chem. Soc. 129, 1122–1131 (2007).

    CAS  PubMed  Google Scholar 

  43. Cutsail, G. E. III & DeBeer, S. Challenges and opportunities for applications of advanced X-ray spectroscopy in catalysis research. ACS Catal. 12, 5864–5886 (2022).

    Google Scholar 

  44. Wang, Y. et al. Superionic conduction and interfacial properties of the low temperature phase Li7P2S8Br0.5I0.5. Energy Storage Mater. 19, 80–87 (2019).

    Google Scholar 

  45. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  PubMed  Google Scholar 

  46. Singh, V., Kosa, M., Majhi, K. & Major, D. T. Putting DFT to the test: a first-principles study of electronic, magnetic, and optical properties of Co3O4. J. Chem. Theory Comput. 11, 64–72 (2015).

    CAS  PubMed  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  48. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  49. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  50. Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    CAS  Google Scholar 

  51. Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane–wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    CAS  PubMed  Google Scholar 

  52. Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane–wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

    CAS  PubMed  Google Scholar 

  53. Peng, J., Wang, X., Li, H., Chen, L. & Wu, F. High-capacity, long-life iron fluoride all-solid-state lithium battery with sulfide solid electrolyte. Adv. Energy Mater. 13, 2300706 (2023).

    CAS  Google Scholar 

  54. Wan, T. H., Saccoccio, M., Chen, C. & Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015).

    CAS  Google Scholar 

  55. Wang, D. et al. Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li–S batteries. figshare https://doi.org/10.6084/m9.figshare.27257931 (2024).

Download references

Acknowledgements

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy, through Advanced Battery Materials Research (BMR) program award number DE-EE0008862 (Da. Wang, L.-J.J., R.K. and Do. Wang) and Battelle-Pacific Northwest National Laboratory subcontract award 680628 (Battery500 Consortium, Da. Wang, L.-J.J., L.Y., A.S., A.T.N. and Do. Wang). We gratefully acknowledge the computing resources provided on Bebop, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. This research used 8-BM of the National Synchrotron Light Source II, a US Department of Energy (DOE) Office of Science user facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract number DE-SC0012704 (D. Wierzbicki and Y.D.). The APT characterization performed at EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research, was supported by the US DOE Office of Electricity (OE) under contract DE-AC05-76RL01830 (B.G. and X.L.) through Pacific Northwest National Laboratory project number 70247 (Long Duration and Cost Competitive Energy Storage). In addition, we thank C. George, J. L. Gray and J. Meyet from the Pennsylvania State University for their instrument assistance.

Author information

Authors and Affiliations

Authors

Contributions

Da. Wang and Do. Wang conceived the idea and designed the experiments. B.G. and X.L. conducted the APT experiments. D.Wierzbicki and Y.D. carried out the XAS characterization and analysis. Da. Wang., L.-J.J., A.S. and L.Y. prepared the materials, assembled the batteries and conducted electrochemical tests. V.S., T.R. and A.T.N. designed and performed the simulation. Da. Wang carried out the TEM experiments. M.L. and H.J. conducted the XRD analysis. Da. Wang and R.K. performed the SEM tests. Da. Wang performed the quantitative analysis of dead sulfur. S.S. and Da. Wang designed the Swagelok cell for electrochemical testing. Da. Wang, Do. Wang and X.L. wrote the paper with comments from all authors.

Corresponding author

Correspondence to Donghai Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Yan Yao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Tables 1–11 and Notes 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Gwalani, B., Wierzbicki, D. et al. Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li–S batteries. Nat. Mater. 24, 243–251 (2025). https://doi.org/10.1038/s41563-024-02057-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-024-02057-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing