Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-fullerene acceptors with high crystallinity and photoluminescence quantum yield enable >20% efficiency organic solar cells

Abstract

The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor. It was found that L8-BO-C4, with 2-butyloctyl on one side and 4-butyldecyl on the other side, can simultaneously achieve high crystallinity and PLQY. A high efficiency of 20.42% (certified as 20.1%) with an open-circuit voltage of 0.894 V and a fill factor of 81.6% is achieved for the single-junction OSC. This work reveals how important the strategy of shifting the alkyl chain branching position is in developing high-performance NFAs for efficient OSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular structures, photophysical properties and photovoltaic properties of L8-BO-based NFAs.
Fig. 2: The impact of branched side-chain structures on the micromorphology of the as-cast neat acceptor films.
Fig. 3: Single-crystal structures and molecular packing properties of NFA neat films.
Fig. 4: Morphology characterization of the blend films.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The remaining data are available from the corresponding authors upon reasonable request. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre and are available free of charge with the following codes: L8-BO (CCDC 2005533), L8-BO-C1 (CCDC 2291924), L8-BO-C3 (CCDC 2291925) and L8-BO-C4 (CCDC 2291926).

References

  1. Hou, J., Inganäs, O., Friend, R. H. & Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

    Article  CAS  Google Scholar 

  3. Zhang, G. et al. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev. 118, 3447–3507 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, J., Tan, H. S., Guo, X., Facchetti, A. & Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3, 720–731 (2018).

    Article  CAS  Google Scholar 

  5. Zhang, G. et al. Renewed prospects for organic photovoltaics. Chem. Rev. 122, 14180–14274 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, K. et al. Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture. Nat. Energy 7, 1076–1086 (2022).

    Article  Google Scholar 

  7. Sun, G. et al. High performance polymerized small molecule acceptor by synergistic optimization on π-bridge linker and side chain. Nat. Commun. 13, 5267 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gan, Z. et al. Electrostatic force promoted intermolecular stacking of polymer donors toward 19.4% efficiency binary organic solar cells. Nat. Commun. 14, 6297 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu, J. et al. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 14, 1760 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu, L. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21, 656–663 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, J. et al. Binary organic solar cells with 19.2% efficiency enabled by solid additive. Adv. Mater. 35, 2301583 (2023).

    Article  CAS  Google Scholar 

  12. Lin, Y. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, W. et al. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148–7151 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  15. Cui, Y. et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 32, 1908205 (2020).

    Article  CAS  Google Scholar 

  16. Li, C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605–613 (2021).

    Article  CAS  Google Scholar 

  17. Xu, T. et al. High-performance organic solar cells containing pyrido[2,3-b]quinoxaline-core-based small-molecule acceptors with optimized orbit overlap lengths and molecular packing. Angew. Chem. Int. Ed. 62, e202304127 (2023).

    Article  CAS  Google Scholar 

  18. Luo, Z. et al. Asymmetric side-chain substitution enables a 3D network acceptor with hydrogen bond assisted crystal packing and enhanced electronic coupling for efficient organic solar cells. Energy Environ. Sci. 15, 4601–4611 (2022).

    Article  CAS  Google Scholar 

  19. Li, C. et al. Cyclization of inner linear alkyl chains in fused-ring electron acceptors toward efficient organic solar cells. Sol. RRL 7, 2300067 (2023).

    Article  CAS  Google Scholar 

  20. Liang, H. et al. A rare case of brominated small molecule acceptors for high-efficiency organic solar cells. Nat. Commun. 14, 4707 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu, H. et al. High‐pressure fabrication of binary organic solar cells with high molecular weight D18 yields record 19.65% efficiency. Angew. Chem. Int. Ed. 135, e202314420 (2023).

    Article  Google Scholar 

  22. Chen, X.-K. et al. A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy 6, 799–806 (2021).

    Article  CAS  Google Scholar 

  23. Qian, D. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Meager, I. et al. Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. J. Am. Chem. Soc. 135, 11537–11540 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, F. et al. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm2 V−1 s−1. J. Am. Chem. Soc. 135, 2338–2349 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Lei, T., Dou, J.-H. & Pei, J. Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv. Mater. 24, 6457–6461, (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Back, J. Y. et al. Investigation of structure–property relationships in diketopyrrolopyrrole-based polymer semiconductors via side-chain engineering. Chem. Mater. 27, 1732–1739 (2015).

    Article  CAS  Google Scholar 

  28. Lei, T., Wang, J.-Y. & Pei, J. Roles of flexible chains in organic semiconducting materials. Chem. Mater. 26, 594–603 (2014).

    Article  CAS  Google Scholar 

  29. Chen, S. et al. Influence of side chain length and bifurcation point on the crystalline structure and charge transport of diketopyrrolopyrrole-quaterthiophene copolymers (PDQTs). J. Mater. Chem. C 2, 2183–2190 (2014).

    Article  CAS  Google Scholar 

  30. Kang, I., Yun, H.-J., Chung, D. S., Kwon, S.-K. & Kim, Y.-H. Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 135, 14896–14899 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Jiang, K. et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 3, 3020–3033 (2019).

    Article  CAS  Google Scholar 

  32. Luo, Z. et al. Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells. Sci. China Chem. 63, 361–369 (2020).

    Article  CAS  Google Scholar 

  33. Chen, Y. et al. Asymmetric alkoxy and alkyl substitution on nonfullerene acceptors enabling high-performance organic solar cells. Adv. Energy Mater. 11, 2003141 (2021).

    Article  CAS  Google Scholar 

  34. Luo, S. et al. Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents. Nat. Commun. 14, 6964 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma, K. et al. Modulation of alkyl chain length on the thiazole side group enables over 17% efficiency in all-small-molecule organic solar cells. Adv. Funct. Mater. 33, 2214926 (2023).

    Article  CAS  Google Scholar 

  36. Zhang, J. et al. Alkyl-chain branching of non-fullerene acceptors flanking conjugated side groups toward highly efficient organic solar cells. Adv. Energy Mater. 11, 2102596 (2021).

    Article  CAS  Google Scholar 

  37. Mo, D. et al. Effects of halogenated end groups on the performance of nonfullerene acceptors. ACS Appl. Mater. Interfaces 13, 6147–6155 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017).

    Article  CAS  Google Scholar 

  39. Yan, J., Rezasoltani, E., Azzouzi, M., Eisner, F. & Nelson, J. Influence of static disorder of charge transfer state on voltage loss in organic photovoltaics. Nat. Commun. 12, 3642 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tvingstedt, K., Benduhn, J. & Vandewal, K. Temperature dependence of the spectral line-width of charge-transfer state emission in organic solar cells; static vs. dynamic disorder. Mater. Horiz. 7, 1888–1900 (2020).

    Article  CAS  Google Scholar 

  41. Kahle, F.-J. et al. Static and dynamic disorder of charge transfer states probed by optical spectroscopy. Adv. Energy Mater. 12, 2103063 (2022).

    Article  CAS  Google Scholar 

  42. Azzouzi, M. et al. Nonradiative energy losses in bulk-heterojunction organic photovoltaics. Phys. Rev. X 8, 031055 (2018).

    CAS  Google Scholar 

  43. Lai, H. et al. Exploring the significance of packing modes and 3D framework sizes and utilizing three chlorine-mediated acceptors and the “like dissolves like” approach for achieving an efficiency over 19%. Energy Environ. Sci. 16, 5944–5955 (2023).

    Article  CAS  Google Scholar 

  44. Lai, H. et al. Crystallography, packing mode, and aggregation state of chlorinated isomers for efficient organic solar cells. CCS Chem. 5, 1118–1129 (2022).

    Article  Google Scholar 

  45. Liu, T. et al. Optimized fibril network morphology by precise side-chain engineering to achieve high-performance bulk-heterojunction organic solar cells. Adv. Mater. 30, 1707353 (2018).

    Article  Google Scholar 

  46. Xia, T., Cai, Y., Fu, H. & Sun, Y. Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells. Sci. China Chem. 62, 662–668 (2019).

    Article  CAS  Google Scholar 

  47. Li, D. et al. Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells. Adv. Mater. 35, 2208211 (2023).

    Article  CAS  Google Scholar 

  48. Pang, B. et al. B–N-bond-embedded triplet terpolymers with small singlet–triplet energy gaps for suppressing non-radiative recombination and improving blend morphology in organic solar cells. Adv. Mater. 35, 2211871 (2023).

    Article  CAS  Google Scholar 

  49. Ding, G. et al. Solid additive-assisted layer-by-layer processing for 19% efficiency binary organic solar cells. Nanomicro Lett. 15, 92 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, Q. et al. Improving the performance of layer-by-layer processed organic solar cells via introducing a wide-bandgap dopant into the upper acceptor layer. Adv. Mater. 35, 2211372 (2023).

    Article  CAS  Google Scholar 

  51. Zhong, Z. et al. Non-halogen solvent processed binary organic solar cells with efficiency of 19% and module efficiency over 15% enabled by asymmetric alkyl chain engineering. Adv. Energy Mater. 13, 2302273 (2023).

    Article  CAS  Google Scholar 

  52. Wang, C. et al. Unique assembly of giant star-shaped trimer enables non-halogen solvent-fabricated, thermal stable, and efficient organic solar cells. Joule 7, 2386–2401 (2023).

    Article  CAS  Google Scholar 

  53. Wei, Y. et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv. Mater. 34, 2204718 (2022).

    Article  CAS  Google Scholar 

  54. Zhou, M. et al. 19.10% efficiency and 80.5% fill factor layer-by-layer organic solar cells realized by 4-bis(2-thienyl)pyrrole-2,5-dione based polymer additives for inducing vertical segregation morphology. Adv. Mater. 35, 2208279 (2023).

    Article  CAS  Google Scholar 

  55. Deng, M. et al. Y-type non-fullerene acceptors with outer branched side chains and inner cyclohexane side chains for 19.36% efficiency polymer solar cells. Adv. Mater. 35, 2210760 (2023).

    Article  CAS  Google Scholar 

  56. Gao, W. et al. Achieving 19% power conversion efficiency in planar-mixed heterojunction organic solar cells using a pseudosymmetric electron acceptor. Adv. Mater. 34, 2202089 (2022).

    Article  CAS  Google Scholar 

  57. Chen, Z. et al. Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy Environ. Sci. 16, 3119–3127 (2023).

    Article  CAS  Google Scholar 

  58. Kong, L. et al. In situ removable additive assisted organic solar cells achieving efficiency over 19% and fill factor exceeding 81%. Adv. Energy Mater. 13, 2300763 (2023).

    Article  CAS  Google Scholar 

  59. Han, C. et al. Over 19% efficiency organic solar cells by regulating multidimensional intermolecular interactions. Adv. Mater. 35, 2208986 (2023).

    Article  CAS  Google Scholar 

  60. Chen, H. et al. A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology. Energy Environ. Sci. 16, 1062–1070 (2023).

    Article  CAS  Google Scholar 

  61. Fan, Q. et al. 19.28% efficiency and stable polymer solar cells enabled by introducing an NIR-absorbing guest acceptor. Adv. Funct. Mater. 33, 2211385 (2023).

    Article  CAS  Google Scholar 

  62. Fan, Q. et al. Unidirectional sidechain engineering to construct dual-asymmetric acceptors for 19.23 % efficiency organic solar cells with low energy loss and efficient charge transfer. Angew. Chem. Int. Ed. 62, e202308307 (2023).

    Article  CAS  Google Scholar 

  63. Pang, B. et al. Benzo[d]thiazole based wide bandgap donor polymers enable 19.54% efficiency organic solar cells along with desirable batch-to-batch reproducibility and general applicability. Adv. Mater. 35, 2300631 (2023).

    Article  CAS  Google Scholar 

  64. Wang, X. et al. Embedded host/guest alloy aggregations enable high-performance ternary organic photovoltaics. Adv. Mater. 35, 2305652 (2023).

    Article  CAS  Google Scholar 

  65. Li, X. et al. Benzotriazole-based 3D four-arm small molecules enable 19.1 % efficiency for PM6 : Y6-based ternary organic solar cells. Angew. Chem. Int. Ed. 62, e202306847 (2023).

    Article  CAS  Google Scholar 

  66. Liu, Z. et al. Over 19.1% efficiency for sequentially spin-coated polymer solar cells by employing ternary strategy. Chem. Eng. J. 471, 144711 (2023).

    Article  CAS  Google Scholar 

  67. Guo, C. et al. A polycrystalline polymer donor as pre-aggregate toward ordered molecular aggregation for 19.3% efficiency binary organic solar cells. Adv. Mater. 35, 2304921 (2023).

    Article  CAS  Google Scholar 

  68. Kong, X. et al. Low-cost and high-performance polymer solar cells with efficiency insensitive to active-layer thickness. CCS Chem. 5, 2945–2955 (2023).

    Article  CAS  Google Scholar 

  69. Zhang, M. et al. Tethered small-molecule acceptor refines hierarchical morphology in ternary polymer solar cells: enhanced stability and 19% efficiency. Adv. Mater. 36, 2308606 (2023).

    Article  Google Scholar 

  70. Chen, Z. et al. Restrained energetic disorder for high-efficiency organic solar cells via a solid additive. Energy Environ. Sci. 16, 2637–2645 (2023).

    Article  CAS  Google Scholar 

  71. Ling, Z. et al. Over 19% efficiency in ternary organic solar cells enabled by n-type dopants. ACS Energy Lett. 8, 4104–4112 (2023).

    Article  CAS  Google Scholar 

  72. Ma, R. et al. Revealing the underlying solvent effect on film morphology in high-efficiency organic solar cells through combined ex situ and in situ observations. Energy Environ. Sci. 16, 2316–2326 (2023).

    Article  CAS  Google Scholar 

  73. Xiao, C. et al. Hybrid cycloalkyl-alkyl chain-based symmetric/asymmetric acceptors with optimized crystal packing and interfacial exciton properties for efficient organic solar cells. Adv. Sci. 10, 2206580 (2023).

    Article  CAS  Google Scholar 

  74. Zhang, G. et al. Simultaneously improved Jsc and Voc achieving 19.15% efficiency in ternary blend polymer solar cell containing a Y-type acceptor with thiophene based end groups. Chem. Eng. J. 476, 146538 (2023).

    Article  CAS  Google Scholar 

  75. Chong, K. et al. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv. Mater. 34, 2109516 (2022).

    Article  CAS  Google Scholar 

  76. Lu, H. et al. High-efficiency binary and ternary organic solar cells based on novel nonfused-ring electron acceptors. Adv. Mater. 36, 2307292 (2023).

    Article  Google Scholar 

  77. Zheng, Z. et al. Rational control of meniscus-guided coating for organic photovoltaics. Sci. Adv. 9, eadg9021 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu, R. et al. Thermodynamic phase transition of three-dimensional solid additives guiding molecular assembly for efficient organic solar cells. Angew. Chem. Int. Ed. 62, e202308367 (2023).

    Article  CAS  Google Scholar 

  79. Deng, B. et al. Niobium-carbide MXene modified hybrid hole transport layer enabling high-performance organic solar cells over 19%. Small 19, 2207505 (2023).

    Article  CAS  Google Scholar 

  80. Wen, L. et al. Achieving desired pseudo-planar heterojunction organic solar cells via binary-dilution Strategy. Adv. Mater. 36, 2308159 (2023).

    Article  Google Scholar 

  81. Guan, S. et al. Balancing the selective absorption and photon-to-electron conversion for semitransparent organic photovoltaics with 5.0% light-utilization efficiency. Adv. Mater. 34, 2205844 (2022).

    Article  CAS  Google Scholar 

  82. Zhan, L. et al. Multiphase morphology with enhanced carrier lifetime via quaternary strategy enables high-efficiency, thick-film, and large-area organic photovoltaics. Adv. Mater. 34, 2206269 (2022).

    Article  CAS  Google Scholar 

  83. Xu, X. et al. Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Adv. Mater. 35, 2208997 (2023).

    Article  CAS  Google Scholar 

  84. Wan, J. et al. An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency. Energy Environ. Sci. 15, 5192–5201 (2022).

    Article  CAS  Google Scholar 

  85. Bi, P. et al. Enhancing photon utilization efficiency for high-performance organic photovoltaic cells via regulating phase-transition kinetics. Adv. Mater. 35, 2210865 (2023).

    Article  CAS  Google Scholar 

  86. Chen, T. et al. Compromising charge generation and recombination of organic photovoltaics with mixed diluent strategy for certified 19.4% efficiency. Adv. Mater. 35, 2300400 (2023).

    Article  CAS  Google Scholar 

  87. Liu, K. et al. Organic solar cells with over 19% efficiency enabled by a 2D-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv. Mater. 35, 2300363 (2023).

    Article  CAS  Google Scholar 

  88. Sun, R. et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv. Mater. 34, 2110147 (2022).

    Article  CAS  Google Scholar 

  89. Zhan, L. et al. Manipulating charge transfer and transport via intermediary electron acceptor channels enables 19.3% efficiency organic photovoltaics. Adv. Energy Mater. 12, 2201076 (2022).

    Article  CAS  Google Scholar 

  90. Gao, J. et al. Over 19.2% efficiency of organic solar cells enabled by precisely tuning the charge transfer state via donor alloy strategy. Adv. Sci. 9, 2203606 (2022).

    Article  CAS  Google Scholar 

  91. Li, S. et al. Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency. Energy Environ. Sci. 16, 2262–2273 (2023).

    Article  CAS  Google Scholar 

  92. Wang, J. et al. Manipulating film formation kinetics enables organic photovoltaic cells with 19.5% efficiency. CCS Chem. 6, 218–229 (2023).

    Article  Google Scholar 

  93. Cui, Y. et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 33, 2102420 (2021).

    Article  CAS  Google Scholar 

  94. Hao, S. et al. Saddle-shaped third component with out-of-plane electrostatic dipole for realizing high-performance photovoltaic donor terpolymers. Adv. Mater. 35, 2301732 (2023).

    Article  CAS  Google Scholar 

  95. de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

Y.S. appreciates the support from the National Key Research and Development Program of China (No. 2022YFB4200400), the National Natural Science Foundation of China (Grant Nos. 52333005 and 51825301) and the Beijing Natural Science Foundation (Z230018). H.Y. appreciates the support from the National Key Research and Development Program of China (No. 2019YFA0705900) funded by MOST, the Basic and Applied Research Major Program of Guangdong Province (No. 2019B030302007), National Natural Science Foundation of China (NSFC, No. 22075057), the Shen Zhen Technology and Innovation Commission through (Shenzhen Fundamental Research Program, JCYJ20200109140801751), the Hong Kong Research Grants Council (research fellow scheme RFS2021-6S05, RIF project R6021-18, CRF project C6023-19G, GRF project 16310019, 16310020, 16309221, 16309822), Hong Kong Innovation and Technology Commission (ITC-CNERC14SC01) and Foshan-HKUST (Project No. FSUST19-CAT0202), Zhongshan Municipal Bureau of Science and Technology (No. ZSST20SC02), Guangdong-Hong Kong-Macao Joint Laboratory (No. 2023B1212120003) and Tencent Xplorer Prize. H.Y.W. acknowledges the financial support from the National Research Foundation of Korea (2019R1A6A1A11044070). J.Y. acknowledges funding support from National Natural Science Foundation of China (No. 62404191) and Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515111140 and No. 2024A1515012318). J.S. appreciates the support from the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (No. GZB20230919). We thank F. Liu and Y. Zhang for their assistance with photovoltaic module fabrication and the transient photocurrent and transient photovoltage measurements. The diabatization calculations and diabatic-state analysis were performed using the homemade software package Diabat, provided by W. Liang, Y. Zhao and Y. Wang from Xiamen University.

Author information

Authors and Affiliations

Authors

Contributions

C.L. conceived the idea, designed and synthesized the L8-BO-Cn+1 acceptors. J.S. fabricated and characterized the devices and conducted the certification. H.L. and F.H. grew the single crystals and analysed the single-crystal structures of the L8-BO and L8-BO-Cn+1 acceptors. H.Z., Y.L. and F.G. performed the PLQY experiments and analysed the data. R.Z., Z.Z., X.-K.C. and C.Z. performed the theoretical calculations of the L8-BO and L8-BO-Cn+1 acceptors and analysed the data. J.X. helped to process and analyse the single-crystal and GIWAXS data. H.H., L.L., S.L. and J.Y. performed the temperature-dependent PL measurements and analysed the data. J.G. and Z.T. performed the EL and sEQE experiments and analysed the data. M.H.J. and H.Y.W. performed the GIWAXS characterizations and analysed the data. H.Y. and Y.S. supervised and directed this project. C.L., J.S., H.Y. and Y.S. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jiali Song, He Yan or Yanming Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Hin-Lap Yip and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–127, Tables 1–18, Methods, Notes 1–5 and Refs. 1–82.

Reporting Summary

Supplementary Data 1

Statistical source data for Supplementary Figs. 24, 43, 52 and 55a and Supplementary Tables 2, 4, 5, 11, 13 and 15.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Table 1

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Song, J., Lai, H. et al. Non-fullerene acceptors with high crystallinity and photoluminescence quantum yield enable >20% efficiency organic solar cells. Nat. Mater. 24, 433–443 (2025). https://doi.org/10.1038/s41563-024-02087-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-024-02087-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing