Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dendrite formation in solid-state batteries arising from lithium plating and electrolyte reduction

Abstract

All-solid-state batteries offer high-energy-density and eco-friendly energy storage but face commercial hurdles due to dendrite formation, especially with lithium metal anodes. Here we report that dendrite formation in Li/Li7La3Zr2O12/Li batteries occurs via two distinct mechanisms, using non-invasive solid-state nuclear magnetic resonance and magnetic resonance imaging. Tracer-exchange nuclear magnetic resonance shows non-uniform Li plating at electrode–electrolyte interfaces and local Li+ reduction at Li7La3Zr2O12 grain boundaries. In situ magnetic resonance imaging reveals rapid dendrite formation via non-uniform Li plating, followed by sluggish bulk dendrite nucleation from Li+ reduction, with an intervening period of stalled growth. Formation of amorphous dendrites and subsequent crystallization, the defect chemistry of solid electrolytes and battery operating conditions play a critical role in shaping the complex interplay between the two mechanisms. Overall, this work deepens our understanding of dendrite formation in solid-state Li batteries and provides comprehensive insight that might be valuable for mitigating dendrite-related challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Li microstructure formation in cubic LLZO.
Fig. 2: Two mechanisms of dendrite formation in LLZO validated via tracer-exchange NMR.
Fig. 3: Dendrite distribution in LLZO solid electrolytes.
Fig. 4: In situ MRI detection of dendrite formation and propagation through LLZO.

Similar content being viewed by others

Data availability

Data generated or analysed during this study are also included in Supplementary Information. Further data are available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

The Python code used for simulating the tracer-exchange process is provided via GitHub at https://github.com/Jak1022/Python_tracer_exchange.

References

  1. Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

    CAS  PubMed  Google Scholar 

  2. Cheng, E. J., Sharafi, A. & Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017).

    CAS  Google Scholar 

  3. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Google Scholar 

  4. Krauskopf, T. et al. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule 3, 2030–2049 (2019).

    CAS  Google Scholar 

  5. Manalastas, W. et al. Mechanical failure of garnet electrolytes during Li electrodeposition observed by in-operando microscopy. J. Power Sources 412, 287–293 (2019).

    CAS  Google Scholar 

  6. Westover, A. S., Dudney, N. J., Sacci, R. L. & Kalnaus, S. Deposition and confinement of Li metal along an artificial Lipon–Lipon interface. ACS Energy Lett. 4, 651–655 (2019).

    CAS  Google Scholar 

  7. Kazyak, E. et al. Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter 2, 1025–1048 (2020).

    Google Scholar 

  8. Ning, Z. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121–1129 (2021).

    CAS  PubMed  Google Scholar 

  9. Lv, S. et al. Operando monitoring the lithium spatial distribution of lithium metal anodes. Nat. Commun. 9, 2152 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Ning, Z. et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023).

    CAS  PubMed  Google Scholar 

  11. Krauskopf, T., Hartmann, H., Zeier, W. G. & Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11, 14463–14477 (2019).

    CAS  PubMed  Google Scholar 

  12. Tsai, C.-L. et al. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 8, 10617–10626 (2016).

    CAS  PubMed  Google Scholar 

  13. Heo, S. et al. Short-circuit mechanism induced by crack propagation spurred by inhomogeneous electric field in garnet-based solid electrolyte. J. Power Sources 510, 230389 (2021).

    CAS  Google Scholar 

  14. Tian, H.-K., Xu, B. & Qi, Y. Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J. Power Sources 392, 79–86 (2018).

    CAS  Google Scholar 

  15. Tian, H.-K., Liu, Z., Ji, Y., Chen, L.-Q. & Qi, Y. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem. Mater. 31, 7351–7359 (2019).

    CAS  Google Scholar 

  16. Zhao, C.-Z. et al. An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4, eaat3446 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016).

    CAS  PubMed  Google Scholar 

  18. Song, Y. et al. Revealing the short‐circuiting mechanism of garnet‐based solid‐state electrolyte. Adv. Energy Mater. 9, 1900671 (2019).

    Google Scholar 

  19. Liu, X. et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021).

    CAS  PubMed  Google Scholar 

  20. Gao, H. et al. Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption. Nat. Commun. 13, 5050 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ye, L. & Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021).

    CAS  PubMed  Google Scholar 

  22. Zhu, C. et al. Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques. Nat. Commun. 14, 1300 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    CAS  Google Scholar 

  24. Ping, W. et al. Reversible short‐circuit behaviors in garnet‐based solid‐state batteries. Adv. Energy Mater. 10, 2000702 (2020).

    CAS  Google Scholar 

  25. Li, Q. et al. In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy 63, 103895 (2019).

    CAS  Google Scholar 

  26. Song, B. et al. Dynamic lithium distribution upon dendrite growth and shorting revealed by operando neutron imaging. ACS Energy Lett. 4, 2402–2408 (2019).

    CAS  Google Scholar 

  27. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    CAS  Google Scholar 

  28. Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    CAS  Google Scholar 

  29. Binninger, T., Marcolongo, A., Mottet, M., Weber, V. & Laino, T. Comparison of computational methods for the electrochemical stability window of solid-state electrolyte materials. J. Mater. Chem. A 8, 1347–1359 (2020).

    CAS  Google Scholar 

  30. Wandt, J. et al. Operando electron paramagnetic resonance spectroscopy – formation of mossy lithium on lithium anodes during charge–discharge cycling. Energy Environ. Sci. 8, 1358–1367 (2015).

    CAS  Google Scholar 

  31. Niemöller, A., Jakes, P., Eichel, R.-A. & Granwehr, J. EPR imaging of metallic lithium and its application to dendrite localisation in battery separators. Sci. Rep. 8, 14331 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Fang, Q. & Lafdi, K. Effect of nanofiller morphology on the electrical conductivity of polymer nanocomposites. Nano Express 2, 010019 (2021).

    CAS  Google Scholar 

  33. Hayamizu, K., Terada, Y., Kataoka, K., Akimoto, J. & Haishi, T. Relationship between Li+ diffusion and ion conduction for single-crystal and powder garnet-type electrolytes studied by 7Li PGSE NMR spectroscopy. Phys. Chem. Chem. Phys. 21, 23589–23597 (2019).

    CAS  PubMed  Google Scholar 

  34. Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20, 503–510 (2021).

    CAS  PubMed  Google Scholar 

  35. Wang, H., Lin, D., Liu, Y., Li, Y. & Cui, Y. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Sci. Adv. 3, e1701301 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Chien, P.-H. et al. Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI. J. Phys. Chem. Lett. 9, 1990–1998 (2018).

    CAS  PubMed  Google Scholar 

  37. Yang, M., Liu, Y. & Mo, Y. Lithium crystallization at solid interfaces. Nat. Commun. 14, 2986 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, M., Liu, Y., Nolan, A. M. & Mo, Y. Interfacial atomistic mechanisms of lithium metal stripping and plating in solid‐state batteries. Adv. Mater. 33, 2008081 (2021).

    CAS  Google Scholar 

  39. Haase, A. Snapshot FLASH MRI. Applications to T1, T2, and chemical-shift imaging. Magn. Reson. Med. 13, 77–89 (1990).

    CAS  PubMed  Google Scholar 

  40. Serša, I. & Mikac, U. A study of MR signal reception from a model for a battery cell. J. Magn. Reson. 294, 7–15 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the National Science Foundation under grant no. DMR-2319151 for Y.C. and Y.-Y.H. All solid-state NMR experiments were performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement nos DMR-1644779 and DMR-2128556. We thank the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences programme for support under award no. DE-SC0019121 for D.H. and H.X. This research used resources of the Center for Nanoscale Materials, a DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

Y.-Y.H. conceived the concept, designed the experiments and supervised the project. S.C.G. directed and supervised the MRI component of the study. H.L., Y.C. and P.-H.C. performed LLZO synthesis, X-ray diffraction characterization, symmetrical cell assembly and electrochemical measurements. H.L., Y.C., P.-H.C. and E.T. carried out 6,7Li NMR. H.L. and Y.C. performed numerical simulations and Li isotope composition analysis of cycled samples. S.C.G., J.T.R., H.L., Y.C., P.-H.C., G.A., I.P.O., J.B., S.W.H. and Y.-Y.H. performed MRI and data analysis. P.L.G. developed the MRI gradient coil for in situ 2D MRI. D.H. and H.X. contributed to TEM and energy-filtered TEM data acquisition and analysis. Y.-Y.H., H.L., Y.C. and P.-H.C. wrote the paper with contributions from all co-authors.

Corresponding authors

Correspondence to Samuel C. Grant or Yan-Yan Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Scheme 1.

Source data

Source Data Fig. 1

Cycling voltage profile, solid-state NMR and EPR data.

Source Data Fig. 2

The solid-state NMR and material composition data.

Source Data Fig. 4

Cycling voltage profile and dendrite formation data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chen, Y., Chien, PH. et al. Dendrite formation in solid-state batteries arising from lithium plating and electrolyte reduction. Nat. Mater. 24, 581–588 (2025). https://doi.org/10.1038/s41563-024-02094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-024-02094-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing