Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-density brush-shaped polymer lipids reduce anti-PEG antibody binding for repeated administration of mRNA therapeutics

A Publisher Correction to this article was published on 04 June 2025

This article has been updated

Abstract

Messenger RNA lipid-nanoparticle-based therapies represent an emerging class of medicines for a variety of applications. However, anti-poly(ethylene glycol) (anti-PEG) antibodies generated by widely used PEGylated medicines and lipid nanoparticles hinder therapeutic efficacy upon repeated dosing. Here we report the chemical design, synthesis and optimization of high-density brush-shaped polymer lipids that reduce anti-PEG antibody binding to improve protein production consistency in repeated dosing. Brush-shaped polymer lipid parameters, including side chain length, degree of polymerization, anchor alkyl length and surface regimes on lipid nanoparticles modulate anti-PEG antibody binding affinity and control their blood circulation pharmacokinetics. Compared to widely used 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000, lipid nanoparticles containing brush-shaped polymer lipids generate superior therapeutic outcomes in protein replacement therapy and genome editing models, reformulating structure–activity guidelines for the design of PEG lipid substitutes. Overall, these findings contribute to the general effort in the development of lipid nanoparticles with low immunogenicity to overcome current roadblocks to nucleic acid medicines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic polymer-lipid-incorporated LNPs mediate efficient mRNA delivery.
Fig. 2: Synthetic chemistry controls polymer architectures and mRNA delivery efficacy.
Fig. 3: Polymerization parameters and polymer regimes control the pharmacokinetic profile and APA binding.
Fig. 4: BPL LNPs outperform DMG-PEG2000 LNPs in repeated dose regimen studies.
Fig. 5: BPL LNPs overcome the APA inhibitory effect induced by DMG-PEG2000 LNPs.
Fig. 6: BPL LNPs achieve superior therapeutic outcomes in protein replacement and genome editing.

Similar content being viewed by others

Data availability

All the data are available from the corresponding author upon request. Source data are provided with this paper.

Change history

References

  1. Rohner, E., Yang, R., Foo, K. S., Goedel, A. & Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Zabaleta, N., Torella, L., Weber, N. D. & Gonzalez-Aseguinolaza, G. mRNA and gene editing: late breaking therapies in liver diseases. Hepatology 76, 869–887 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Cacicedo, M. L., Limeres, M. J. & Gehring, S. mRNA-based approaches to treating liver diseases. Cells 11, 3328 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qin, S. et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 7, 166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xiao, Y. et al. Emerging mRNA technologies: delivery strategies and biomedical applications. Chem. Soc. Rev. 51, 3828–3845 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Hajj, K. A. & Whitehead, K. A. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2, 17056 (2017).

    Article  CAS  Google Scholar 

  7. Mendell, J. R. et al. Current clinical applications of in vivo gene therapy with AAVs. Mol. Ther. 29, 464–488 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Milani, M. et al. Liver-directed lentiviral gene therapy corrects hemophilia A mice and achieves normal-range factor VIII activity in non-human primates. Nat. Commun. 13, 2454 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen, G. N. et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat. Biotechnol. 39, 47–55 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Hakim, C. H. et al. Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models. Nat. Commun. 12, 6769 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, Y. et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34, 334–338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Schulz, M. et al. Binding and neutralizing anti-AAV antibodies: detection and implications for rAAV-mediated gene therapy. Mol. Ther. 31, 616–630 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, C. et al. Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther. 19, 288–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Boutin, S. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 21, 704–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Colella, P., Ronzitti, G. & Mingozzi, F. Emerging issues in AAV-mediated in vivo gene therapy. Mol. Ther. Methods Clin. Dev. 8, 87–104 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei, T. et al. Delivery of tissue-targeted scalpels: opportunities and challenges for in vivo CRISPR/Cas-based genome editing. ACS Nano 14, 9243–9262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ju, Y. et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 16, 11769–11780 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Garofalo, C. et al. Different insight into amphiphilic PEG-PLA copolymers: influence of macromolecular architecture on the micelle formation and cellular uptake. Biomacromolecules 15, 403–415 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, K. et al. Hydrophobic domain structure of linear-dendritic poly(ethylene glycol) lipids affects RNA delivery of lipid nanoparticles. Mol. Pharm. 17, 1575–1585 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kenworthy, A. K., Hristova, K., Needham, D. & McIntosh, T. J. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol). Biophys. J. 68, 1921–1936 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bai, L., Tan, L., Chen, L., Liu, S. & Wang, Y. Preparation and characterizations of poly(2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization. J. Mater. Chem. B 2, 7785–7794 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Allen, T. M., Hansen, C. B. & de Menezes, D. E. L. Pharmacokinetics of long-circulating liposomes. Adv. Drug Deliv. Rev. 16, 267–284 (1995).

    Article  CAS  Google Scholar 

  29. Chen, S. et al. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of sirna. J. Control. Release 235, 236–244 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Greenwald, R. B. PEG drugs: An overview. J. Control. Release 74, 159–171 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Gref, R. et al. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Harris, J. M. & Chess, R. B. Effect of PEGylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Stavnsbjerg, C. et al. Accelerated blood clearance and hypersensitivity by PEGylated liposomes containing TLR agonists. J. Control. Release 342, 337–344 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Emam, S. E. et al. Anti-PEG IgM production and accelerated blood clearance phenomenon after the administration of PEGylated exosomes in mice. J. Control. Release 334, 327–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Kang, D. D. et al. Engineering LNPs with polysarcosine lipids for mRNA delivery. Bioact. Mater. 37, 86–93 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Da Silva Sanchez, A. J. et al. Substituting poly(ethylene glycol) lipids with poly(2-ethyl-2-oxazoline) lipids improves lipid nanoparticle repeat dosing. Adv. Healthc. Mater. 13, 2304033 (2024).

  37. Chen, J., Rizvi, A., Patterson, J. P. & Hawker, C. J. Discrete libraries of amphiphilic poly(ethylene glycol) graft copolymers: synthesis, assembly, and bioactivity. J. Am. Chem. Soc. 144, 19466–19474 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Sun, Y. et al. In vivo editing of lung stem cells for durable gene correction in mice. Science 384, 1196–1202 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lian, X. et al. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. Nat. Nanotechnol. 19, 1409–1417 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, X. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 18, 265–291 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by the Welch Foundation (I-2123-20220031); the National Institutes of Health (NIH) National Institute of Biomedical Imaging and Bioengineering (NIBIB; R01 5R01EB025192-06) and National Cancer Institute (NCI; R01 CA269787-01); and the Cystic Fibrosis Foundation (CFF; SIEGWA18XX0 and SIEGWA21XX0). J.G.M. was supported in part by NIH UL1TR003163, NIH 1P30DK127984-01A1 and NIH 1P01HL160487-01. C.L. was supported by NIH; R01GM143723. We acknowledge support from H. Zhu and his lab for assistance with the FAH knock-out mouse study, and from the University of Texas Southwestern Small Animal Imaging Resource (NCI P30CA142543), Whole Brain Microscopy Facility (SCR_017949), Metabolic Phenotyping Core, Tissue Management Shared Resource (P30CA142543) and Histo Pathology Core. LNPs and mice in Figs 1a,b, 3b,i, 4a,e, 5a and 6a,f created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

Y.X. and D.J.S. conceived and designed the experiments and wrote the manuscript. Y.X., X.L., Y.S., Y.-C.S., A.V., Z.C., A.G., J.G.M., S.C., L.Z., E.G., X.W., L.F., Y.Y., M.I.D. and C.L. performed experiments. All authors discussed the results and commented on the manuscript. D.J.S. directed the research.

Corresponding author

Correspondence to Daniel J. Siegwart.

Ethics declarations

Competing interests

The University of Texas Southwestern has filed patent applications on the technologies described in this manuscript with some co-authors listed as inventors. D.J.S. discloses financial interests in ReCode Therapeutics, Signify Bio, Jumble Therapeutics and Tome Biosciences.

Peer review

Peer review information

Nature Materials thanks Camilla Foged, Liangfang Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–54, Tables 1–7, Materials and Methods, Results and Discussion and references.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Figs. 1, 3–12, 14, 15, 19 and 21–23.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 6d

Unprocessed western blots.

Source Data Fig. 6i

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Lian, X., Sun, Y. et al. High-density brush-shaped polymer lipids reduce anti-PEG antibody binding for repeated administration of mRNA therapeutics. Nat. Mater. (2025). https://doi.org/10.1038/s41563-024-02116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-02116-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research