Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemiluminescent tactile visual synapse enabling in situ health monitoring

Abstract

Tactile visual synapses combine the functionality of tactile artificial synapses with the ability to visualize their activity in real time and provide a direct and intuitive visualization of the activity, offering an efficient route for in situ health monitoring. Herein we present a tactile visual synapse that enables in situ monitoring of finger rehabilitation and electrocardiogram analysis. Repetitive finger flexion and various arrhythmias are monitored and visually guided using the developed tactile visual synapse combined with an electrical and optical output feedback algorithm. The tactile visual synapse has the structure of an electrochemical transistor comprising an elastomeric top gate as a tactile receptor and an electrochemiluminescent ion gel as a light-emitting layer stacked on a polymeric semiconductor layer, forming an electrical synaptic channel between source and drain electrodes. The low-power (~34 μW) visualization of the tactile synaptic activity associated with the repetitive motions of fingers and heartbeats enables the development of a convenient and efficient personalized healthcare system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemiluminescent tactile visual synapse (ECL-TVS).
Fig. 2: Analysis of the operational mechanism in an ECL-TVS.
Fig. 3: Visualization of the tactile synaptic activity in an ECL-TVS.
Fig. 4: Finger rehabilitation monitoring with a wearable ECL-TVS.
Fig. 5: Arrhythmia monitoring system with ECL-TVS.

Similar content being viewed by others

Data availability

The data that support the findings of this study or additional data related to this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Chen, Y. et al. Synaptic plasticity powering long-afterglow organic light-emitting transistors. Adv. Mater. 33, 210369 (2021).

    Article  Google Scholar 

  2. Zhu, Y. et al. Intelligent, biomimetic, colour-tunable, light-emitting artificial skin with memory function. Nano Energy 90, 106569 (2021).

    Article  CAS  Google Scholar 

  3. Zhao, S. et al. Electroluminescent synaptic devices with logic functions. Nano Energy 54, 383–389 (2018).

    Article  CAS  Google Scholar 

  4. Seung, H. et al. Integration of synaptic phototransistors and quantum dot light-emitting diodes for visualization and recognition of UV patterns. Sci. Adv. 8, eabq3101 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu, Y. et al. Light-emitting memristors for optoelectronic artificial efferent nerve. Nano Lett. 21, 6087–6094 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Cai, M. et al. A multifunctional electronic skin based on patterned metal films for tactile sensing with a broad linear response range. Sci. Adv. 7, eabl8313 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, L. et al. Wearable circuits sintered at room temperature directly on the skin surface for health monitoring. ACS Appl. Mater. Interfaces 12, 45504–45515 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Luigi, D. et al. Visual, tactile, and contact force feedback: which one is more important for catheter ablation? Results from an in vitro experimental study. Heart Rhythm 11, 506–513 (2014).

    Article  Google Scholar 

  9. Dobiasch, M., Krenn, B., Lamberts, R. P. & Baca, A. The effects of visual feedback on performance in heart rate- and power-based-tasks during a constant load cycling test. J. Sports Sci. Med. 21, 49–57 (2022).

    PubMed  PubMed Central  Google Scholar 

  10. Elor, A. & Kurniawan, S. The ultimate display for physical rehabilitation: a bridging review on immersive virtual reality. Front. Virtual Real. 1, 585993 (2020).

    Article  Google Scholar 

  11. Viirre, E. & Sitarz, R. Vestibular rehabilitation using visual displays: preliminary study. Laryngoscope 112, 500–503 (2002).

    Article  PubMed  Google Scholar 

  12. Lee, K. et al. Artificially intelligent tactile ferroelectric skin. Adv. Sci. 7, 2001662 (2020).

    Article  CAS  Google Scholar 

  13. Wan, C. et al. An artificial sensory neuron with tactile perceptual learning. Adv. Mater. 30, 1801291 (2018).

    Article  Google Scholar 

  14. Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Shim, H. et al. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 5, eaax4961 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, Y. R., Trung, T. Q., Hwang, B. U. & Lee, N. E. A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 11, 2753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park, H. L. et al. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater. 32, 1906899 (2020).

    Article  CAS  Google Scholar 

  18. Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, J. Y. et al. Ultrafast responsive and low-energy-consumption poly(3-hexylthiophene)/perovskite quantum dots composite film-based photonic synapse. Adv. Funct. Mater. 31, 2105911 (2021).

    Article  CAS  Google Scholar 

  20. Cheng, Z., Ríos, C., Pernice, W. H. P., David Wright, C. & Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 3, e1700160 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee, K. et al. Retina-inspired structurally tunable synaptic perovskite nanocones. Adv. Funct. Mater. 31, 2105596 (2021).

    Article  CAS  Google Scholar 

  22. Wang, Y. et al. Stretchable temperature-responsive multimodal neuromorphic electronic skin with spontaneous synaptic plasticity recovery. ACS Nano. 16, 8283–8293 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Sun, L. et al. Synaptic computation enabled by Joule heating of single-layered semiconductors for sound localization. Nano Lett. 18, 3229–3234 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Guo, L. Q., Wen, J., Zhu, L. Q., Fu, Y. M. & Xiao, H. Humidity-dependent synaptic plasticity for proton gated oxide synaptic transistor. IEEE Electron Device Lett. 38, 1248–1251 (2017).

    Article  CAS  Google Scholar 

  25. Nie, S., He, Y., Liu, R., Shi, Y. & Wan, Q. Low-voltage oxide-based synaptic transistors for spiking humidity detection. IEEE Electron Device Lett. 40, 459–462 (2019).

    Article  CAS  Google Scholar 

  26. Kim, Y. et al. Bird-inspired self-navigating artificial synaptic compass. ACS Nano 15, 20116–20126 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, H. Y. et al. Shape-deformable and locomotive MXene (Ti3C2Tx)-encapsulated magnetic liquid metal for 3D-motion-adaptive synapses. Adv. Funct. Mater. 33, 2210385 (2022).

    Article  Google Scholar 

  28. Yu, J. et al. Contact-electrification-activated artificial afferents at femtojoule energy. Nat. Commun. 12, 1581 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shan, L. et al. A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition. Nat. Commun. 14, 2648 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, Y. et al. Nanofloating gate modulated synaptic organic light-emitting transistors for reconfigurable displays. Sci. Adv. 8, eabq4824 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, Q. et al. Neuromorphic display system for intelligent display. Nano Energy 94, 106931 (2022).

    Article  CAS  Google Scholar 

  32. Deheyn, D. D. & Wilson, N. G. Bioluminescent signals spatially amplified by wavelength-specific diffusion through the shell of a marine snail. Proc. R. Soc. B 278, 2112–2121 (2011).

    Article  PubMed  Google Scholar 

  33. Ohmiya, Y., Kojima, S., Nakamura, M. & Niwa, H. Bioluminescence in the limpet-like snail, Latia neritoides. Bull. Chem. Soc. Jpn. 78, 1197–1205 (2005).

    Article  CAS  Google Scholar 

  34. Lee, K. H. et al. ‘Cut and stick’ rubbery ion gels as high capacitance gate dielectrics. Adv. Mater. 24, 4457–4462 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Choi, Y., Oh, S., Qian, C., Park, J. H. & Cho, J. H. Vertical organic synapse expandable to 3D crossbar array. Nat. Commun. 11, 4595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, S., Lee, H. J., Ji, Y., Lee, K. H. & Hong, K. Electrochemiluminescent transistors: a new strategy toward light-emitting switching devices. Adv. Mater. 33, 2005456 (2021).

    Article  CAS  Google Scholar 

  37. Guo, W. et al. Potential-resolved multicolor electrochemiluminescence for multiplex immunoassay in a single sample. J. Am. Chem. Soc. 140, 15904–15915 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Adamson, N. S. et al. Emission from the working and counter electrodes under co-reactant electrochemiluminescence conditions. Chem. Sci. 12, 9770–9777 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rivnay, J. et al. High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 1, e1400251 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Furukawa, Y. & Shimokawa, D. Polarons, bipolarons, and electrical properties of crystalline conducting polymers. Bull. Chem. Soc. Jpn. 96, 1243–1251 (2023).

    Article  CAS  Google Scholar 

  41. Kachuee M., Fazeli S. & Sarrafzadeh M. ECG heartbeat classification: a deep transferable representation. In 2018 IEEE International Conference on Healthcare Informatics (ICHI) 443–444 (IEEE, 2018).

  42. Choi, S., Yang, J. & Wang, G. Emerging memristive artificial synapses and neurons for energy‐efficient neuromorphic computing. Adv. Mater. 32, 2004659 (2020).s

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Creative Materials Discovery Program and the Pioneer Research Centre Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2022M3C1A3081211), by a grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (RS-2023-00208577), by the Nano & Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (RS-2024-00451891 and RS-2024-00416938), and by the Open Resource Research Program of the Korea Institute of Science and Technology (2E32961). This study was also supported by the National R&D Program administered by the National Research Foundation of Korea (NRF) of the Korea government (Grant NO. RS-2024-00407271, RS-2023-00220077 and RS-2024-00342191) and Korea University Research Grant.

Author information

Authors and Affiliations

Authors

Contributions

W.K. and K.L. conceived and designed the experiments. S.C. performed and analysed neural network simulations. E.P. performed the spectroelectrochemical measurement on the P3HT film. G.K. performed the fabrication and demonstration of the ECL-TVS and prepared the figures. J. Ha assisted in some of the experiments, including ion gel preparation and electrical characterization. Yeeun Kim, J.J., J.H.O. and H.K. performed ECL spectra, scanning electron microscopy and X-ray photoelectron spectroscopy measurements and prepared brightness extraction algorithm developments. T.K. and Yeonji Kim assisted with the characterization of ECL ion gel properties. K.-N.K., W.J. and J.Y. prepared a brightness extraction algorithm. A.J. advised on the optical measurements and analyses. J. Hong and D.R. devised a rehabilitation treatment protocol and advised on the relevant content. T.-W.L. and K.K. participated in the discussions regarding the experimental results and provided an interpretation of them. G.W. and C.P. supervised the project, analysed the data and wrote the manuscript. All authors discussed the results and commented on the study.

Corresponding authors

Correspondence to Gunuk Wang or Cheolmin Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Paschalis Gkoupidenis, Qijun Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Full-colour ECS-TVS.

(a) A plot of the PSC response of an R-ECL-TVS, utilising 20 Vgs pulses sequentially increasing in magnitude. The inset photographs display the light emission of R-ECL-TVS at the increasing number of Vgs pulses. scale bar: 5 mm. (b) Photographs of R, G, and B-ECL-TVS with continuous 15 gate voltage pulses, sequentially increasing in magnitude from −2.2 V to −5 V. Scale bar: 3 mm. (c) Plot of the PSC response of integrated R-, G-, and B- ECL-TVS, utilising 15 gate voltage pulses comprising three sets of five voltage pulses with different voltage magnitudes (−2.7 V for five pulses, −3.3 V for five pulses, and −4.5 V for five pulses) under pressure of 17.20 kPa. (d) Photographs of integrated R-, G-, and B- ECL-TVS at the 1st, 5th, 6th, 10th, 11th, and 15th Vgs pulses. Scale bar: 5 mm.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Notes 1–7 and Figs. 1–45.

Supplementary Video 1

Full-colour ECL-TVS operation.

Supplementary Video 2_1

Index-finger exercise monitoring.

Supplementary Video 2_2

Middle-finger exercise monitoring.

Supplementary Video 2_3

Ring-finger exercise monitoring.

Supplementary Video 3

Battery-driven wearable ECL-TVS operation.

Source data

Source Data Fig. 1

Fig. 1e,f.

Source Data Fig. 2

Fig. 2d–k.

Source Data Fig. 3

Fig. 3a–e,h.

Source Data Fig. 4

Fig. 4c,d.

Source Data Fig. 5

Fig. 5c–f,i.

Source Data Extended Data Fig. 1

Extended Data Fig. 1a,c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W., Lee, K., Choi, S. et al. Electrochemiluminescent tactile visual synapse enabling in situ health monitoring. Nat. Mater. 24, 925–934 (2025). https://doi.org/10.1038/s41563-025-02124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02124-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing