Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origins of elasticity in molecular materials

Abstract

Elasticity is ubiquitous and produces a spontaneously reversible response to applied stress1. Despite the utility and importance of this property in regard to scientific and engineering applications, the atomic-scale location of the force that returns an object to its original shape remains elusive in molecular crystals. Here we use a series of density functional theory calculations to locate precisely where the energy is stored when single crystals of three molecular materials are placed under elastic stress. We show for each material that different intermolecular interactions are responsible for the restoring force under both expansive and compressive strain. These findings provide insight into the elastic behaviour of crystalline materials that is needed for more efficient design of flexible technologies and future smart devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure and elastic bending properties of [CuL12].
Fig. 2: Energy framework analysis of [CuL12].
Fig. 3: Change in energy in response to bending in [CuL12].

Similar content being viewed by others

Data availability

The results of calculations are provided as Supplementary Data 14. Source data are provided with this paper.

Code availability

The Python scripts used to produce the extrapolated atomic coordinates as described in Supplementary Information are available as Supplementary Code 1 or from the authors.

References

  1. Callister, W. D. & Rethwisch, D. G. Materials Science and Engineering: An Introduction 10th edn (Wiley, 2018).

  2. Chaudhuri, O. & Mooney, D. J. Anchoring cell-fate cues. Nat. Mater. 11, 568–569 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Diz-Muñoz, A., Fletcher, D. A. & Weiner, O. D. Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol. 23, 47–53 (2013).

    Article  PubMed  Google Scholar 

  4. Liang, X., Fu, H. & Crosby, A. J. Phase-transforming metamaterial with magnetic interactions. Proc. Natl Acad. Sci. USA 119, e2118161119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, Y., Ma, Y., Zheng, H. & Ramakrishna, S. Piezoelectric materials for flexible and wearable electronics: a review. Mater. Des. 211, 110164 (2021).

    Article  CAS  Google Scholar 

  6. Roberts, T. J. & Azizi, E. Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. J. Exp. Biol. 214, 353–361 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shabahang, S., Clouser, F., Shabahang, F. & Yun, S.-H. Single-mode, 700%-stretchable, elastic optical fibers made of thermoplastic elastomers. Adv. Opt. Mater. 9, 2100270 (2021).

    Article  CAS  Google Scholar 

  8. Vakhshouri, B. Modulus of elasticity of concrete in design codes and empirical models: analytical study. Pract. Period. Struct. Des. Constr. 23, 04018022 (2018).

    Article  Google Scholar 

  9. Zhu, Z. et al. Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago. Nature 559, 608–612 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Trealor, L. R. G. The Physics of Rubber Elasticity (Oxford Univ. Press, 1975).

  11. Bucciarelli, L. L. Engineering Mechanics for Structures (Dover Publications, 2009).

  12. Sharda, S. C. & Tschoegl, N. W. The elastic restoring force in rubbers. Macromolecules 9, 910–917 (1976).

    Article  CAS  Google Scholar 

  13. Kitaigorodsky, A. I. Molecular Crystals and Molecules (Academic, 1973).

  14. Joel, N. & Wooster, W. A. Theories of crystal elasticity. Nature 180, 430–431 (1957).

    Article  CAS  Google Scholar 

  15. Viswanathan, K. S. The theory of elasticity and of wave-propagation in crystals from the atomistic standpoint. Proc. Ind. Acad. Sci. 39, 196–213 (1954).

  16. Raman, C. V. & Viswanathan, K. S. The elastic behaviour of isotropic solids. Proc. Ind. Acad. Sci. 42, 1–9 (1955).

  17. Thompson, A. J. et al. Elastically flexible molecular crystals. Chem. Soc. Rev. 50, 11725–11740 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Thompson, A. J., Price, J. R., McMurtrie, J. & Clegg, J. K. The mechanism of bending in co-crystals of caffeine and 4-chloro-3-nitrobenzoic acid. Nat. Commun. 12, 5983 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu, Z. et al. Optical waveguiding organic single crystals exhibiting physical and chemical bending features. Angew. Chem. Int. Ed. Engl. 59, 4299–4303 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Kenny, E. P., Jacko, A. C. & Powell, B. J. Towards mechanomagnetics in elastic crystals: insights from [Cu(acac)(2)]. Angew. Chem. Int. Ed. Engl. 58, 15082–15088 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Annadhasan, M. et al. Mechano-photonics: flexible single-crystal organic waveguides and circuits. Angew. Chem. Int. Ed. Engl. 59, 13852–13858 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Ravi, J. et al. Geometrically reconfigurable, 2D, all-organic photonic integrated circuits made from two mechanically and optically dissimilar crystals. Adv. Funct. Mater. 31, 2105415 (2021).

    Article  CAS  Google Scholar 

  23. Lan, L. et al. Hybrid elastic organic crystals that respond to aerial humidity. Angew. Chem. Int. Ed. Engl. 61, e202200196 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Di, Q. et al. Fluorescence-based thermal sensing with elastic organic crystals. Nat. Commun. 13, 5280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Worthy, A. et al. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nat. Chem. 10, 65–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Brock, A. J. et al. Elastically flexible crystals have disparate mechanisms of molecular movement induced by strain and heat. Angew. Chem. Int. Ed. Engl. 57, 11325–11328 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. CrystalExplorer17 v. 17.5 (Univ. of Western Australia, 2017).

  28. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ. 4, 575–587 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun. 51, 3735–3738 (2015).

    Article  CAS  Google Scholar 

  30. Jensen, F. An atomic counterpoise method of estimating inter- and intrmolecular basis set superposition errors. J. Chem. Theory Comput. 6, 100–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Kresse, G. & Furthmuler, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  33. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  34. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  35. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Thompson, A. J., Powell, J. A., Melville, J. N., McMurtrie, J. C. & Clegg, J. K. Crystals of aliphatic derivatives of [Cu(acac)2] have distinct atomic-scale mechanisms of bending. Small 19, 2207431 (2023).

    Article  CAS  Google Scholar 

  37. Lacroix, C., Mila, F. & Mendels, P. (eds). Introduction to Frustrated Magnetism: Materials, Experiments, Theory (Springer, 2011).

  38. Paez-Espejo, M., Sy, M. & Boukheddaden, K. Elastic frustration causing two-step and multistep transitions in spin-crossover solids: emergence of complex antiferroelastic structures. J. Am. Chem. Soc. 138, 3202–3210 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Cruddas, J. & Powell, B. J. Spin-state ice in elastically frustrated spin-crossover materials. J. Am. Chem. Soc. 141, 19790–19799 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Maul, J., Ongari, D., Moosavi, S. M., Smit, B. & Erba, A. Thermoelasticity of flexible organic crystals from quasi-harmonic lattice dynamics: the case of copper(II) acetylacetonate. J. Phys. Chem. Lett. 11, 8543–8548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Devarapalli, R. et al. Remarkably distinct mechanical flexibility in three structurally similar semiconducting organic crystals studied by nanoindentation and molecular dynamics. Chem. Mater. 31, 1391–1402 (2019).

    Article  CAS  Google Scholar 

  42. Bhandary, S. et al. The mechanism of bending in a plastically flexible crystal. Chem. Commun. 56, 12841–12844 (2020).

    Article  CAS  Google Scholar 

  43. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C71, 3–8 (2015).

    Google Scholar 

  44. Krishnan, R., Blinkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980).

    Article  CAS  Google Scholar 

  45. Clark, T., Chandrasekhar, J., Spitznagel, G. W. & Schleyer, P. V. R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21 + G basis set for first-row elements, Li-F. J. Comput. Chem. 4, 294–301 (1983).

    Article  CAS  Google Scholar 

  46. Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985).

    Article  CAS  Google Scholar 

  47. Gaussian 16, Revision B.01 (Gaussian, Inc., 2016).

  48. GraphPad Prism, v.8.2.1 (GraphPad Software LLC, 2022).

  49. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.J.T. thanks AINSE Limited for providing financial assistance (PGRA Award). B.S.K.C. thanks the University of Queensland for Research Training Program financial support. The University of Queensland Research Computing Centre, Phoenix HPC service at the University of Adelaide and Pawsey Supercomputing Research Centre through the National Computational Merit Allocation Scheme are thanked for providing high-performance, computing resources. This research was supported by the Australian Government’s National Collaborative Research Infrastructure Strategy (NCRIS). B.J.P. thanks the Australian Research Council for financial support (DP181006201). J.D.E. is a recipient of an Australian Research Council Discovery Early Career Award (DE220100163). We thank A. Grosjean for providing input into the design of CrystalExplorer calculations, and for comments on an early version of the paper.

Author information

Authors and Affiliations

Authors

Contributions

B.S.K.C. performed DFT calculations for [CuL12]. A.J.T. wrote the Python scripts for structure extrapolation and undertook primary data analysis. E.P.K. performed VASP calculations. J.A.P. and A.J.T. performed CrystalExplorer calculations. J.D.E. performed calculations for [CuL22] and [CuL32]. B.J.P., M.A.S., J.C.M. and J.K.C. directed the research. All authors contributed to the analysis of results and writing of the paper.

Corresponding authors

Correspondence to John C. McMurtrie, Benjamin J. Powell or Jack K. Clegg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Shotaro Hayashi, Satoshi Takamizawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Computational methods, extrapolation methodology, calculated mechanical properties, calculation results, curve fitting and single-crystal cantilevers.

Supplementary Data 1

Electronic copy of Supplementary Table 1.

Supplementary Data 2

Electronic copy of Supplementary Table 2.

Supplementary Data 3

Results of calculations for complex of L1.

Supplementary Data 4

Results of calculations for complexes of L2 and L3.

Supplementary Code 1

Python extrapolation scripts.

Supplementary Video 1

Video of cantilever.

Supplementary Video 2

Video of cantilever.

Supplementary Video 3

Video of cantilever.

Supplementary Video 4

Video of cantilever.

Source data

Source Data Fig. 3

Data used for plotting and curve fitting in Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, A.J., Chong, B.S.K., Kenny, E.P. et al. Origins of elasticity in molecular materials. Nat. Mater. 24, 356–360 (2025). https://doi.org/10.1038/s41563-025-02133-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02133-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing